

AMEC Environment & Infrastructure, a division of AMEC Americas Limited Suite 600 - 4445 Lougheed Highway, Burnaby, BC Canada V5C 0E4 Tel +1 (604) 294-3811 Fax +1 (604) 294-4664 www.amec.com

MOUNT POLLEY MINE Tailings Storage Facility 2011 Construction

As-Built Report and Annual Review

Submitted to:

Mount Polley Mining Corporation, Likely, BC

Submitted by:

AMEC Environment & Infrastructure, a division of AMEC Americas Limited Burnaby, BC

30 March 2012

VM00560A.A.1

IMPORTANT NOTICE

This report was prepared exclusively for Mount Polley Mining Corporation by AMEC Environment & Infrastructure, a wholly owned subsidiary of AMEC Americas Limited. The quality of information, conclusions and estimates contained herein is consistent with the level of effort involved in AMEC services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended to be used by Mount Polley Mining Corporation only, subject to the terms and conditions of its contract with AMEC. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

TABLE OF CONTENTS

Page

SUN	1MARY	1
1.0	INTRODUCTION	5
2.0	OPERATION OF THE TAILINGS STORAGE FACILITY 2.1 General	7 7 8 8 8 8
3.0	2011 DAM DESIGN	10
4.0	CONSTRUCTION MONITORING PROGRAM4.1AMEC Support Engineer.4.2AMEC Senior Support4.3MPMC Field Inspector4.4QA/QC Testing4.5Instrumentation Monitoring	11 12 12 12
5.0	 2011 TSF STAGE 7 EMBANKMENT RAISE CONSTRUCTION OVERVIEW	13 14 14 14 14 15 15 15 16 16 17 17
6.0	INSTRUMENTATION MONITORING. 6.1 General. 6.2 New Instrumentation. 6.3 Piezometers. 6.4 Slope Inclinometers .	17 17 18 18
7.0 VM00	WATER MANAGEMENT AND IMPOUNDMENT RAISING SCHEDULE 7.1 General	19 19 20 Page i

TABLE OF CONTENTS

Page

	7.4	Overview of Mass Balance Model	20
	7.5	Dam Raising Schedule	21
	7.6	Mine Planning	21
8.0	CON	NCLUSIONS AND RECOMMENDATIONS	24
9.0	REF	PORT CLOSURE	25
REE	EDE	NCES	26

LIST OF TABLES

Table 1.1:	CDA (2007) Consequence Classification Scheme	2
Table 1.2:	Piezometer Summary	3
Table 1.3:	Slope Inclinometer Summary	
Table 4.1:	Embankment Material Types and QA/QC Testing Requirements	
Table 5.1:	TSF Summary of Material Quantities and Laboratory testing	16

LIST OF FIGURES

Figure 1.1:	Aerial View of Mine Site: 2011	6
Figure 2.1:	Tailings Discharge Plan	7
Figure 2.2:	South and Perimeter Toe Drain Flow Readings – 2011	
Figure 7.1:	Water Transfer	19
Figure 7.2:	Site Water Management Schematic	22
Figure 7.3:	Impoundment Storage Elevation Curve2	23

LIST OF DRAWINGS

2011AB.01	Stage 7 Ta	ailinas Emba	inkment 2011	As-built	General	Site	Plan

- 2011AB.02 Stage 7 Tailings Embankment 2011 As-built Plan View
- 2011AB.03 Tailings Storage Facility Construction: Notes and Specifications
- 2011AB.04 Stage 7 Main Embankment 2011 As-built Section A (20+60)
- 2011AB.05 Stage 7 Perimeter Embankment 2011 As-built Section D (39+90)
- 2011AB.06 Stage 7 South Embankment 2011 As-built Section F (7+20)
- 2011AB.07 Tailings Storage Facility Instrumentation Plan View
- 2011AB.08 South Embankment Instrumentation Sections F 7+20 & I 11+00
- 2011AB.09 Main Embankment Instrumentation Section E 17+60
- 2011AB.10 Main Embankment Instrumentation Section C 18+50
- 2011AB.11 Main Embankment Instrumentation Section A 20+00
- 2011AB.12 Main Embankment Instrumentation Section B 22+40
- 2011AB.13 Main Embankment Instrumentation Section K 24+60
- 2011AB.14 Perimeter Embankment Instrumentation Section J 32+80
- 2011AB.15 Perimeter Embankment Instrumentation Section H 36+00
- 2011AB.16 Perimeter Embankment Instrumentation Sections D 39+90 & G 44+70

TABLE OF CONTENTS

Page

LIST OF APPENDICES

APPENDIX A MATERIAL TESTING RESULTS APPENDIX B INSTRUMENTATION PLOTS APPENDIX C 2011 CONSTRUCTION SEASON PHOTOS

SUMMARY

This report presents the annual review of the operation and performance of the Mount Polley Mine Corporation (MPMC) tailings storage facility (TSF) for 2011, together with the as-built report documenting the 2011 construction of the TSF embankment. This report has been prepared in accordance with the requirements of the British Columbia Ministry of Energy and Mines (MEM), including MEM's updated guidelines for Annual Reports, issued 14 February 2003. The following points give a general summary of the 2011 TSF activities and key developments.

1) Classification of the dam(s) in terms of Consequence of Failure (ref. Canadian Dam Association, Dam Safety Guidelines [2007]).

A formal dam safety review was conducted in 2006 (AMEC 2006). This review assigned a "LOW" hazard classification based on 1999 Canadian Dam Association (CDA 1999) guidelines. CDA updated their Dam Safety Guidelines rating in 2007 (CDA 2007), and under the new classification the TSF is classified under "Significant" category (see Classification System Table 1.1).

2) Change in Engineer of Record for the TSF

The design and construction monitoring of the TSF embankments from mine start up to early 2011 had been completed under the direction of Knight Piésold Limited (KP). AMEC Environment & Infrastructure, a division AMEC Americas Limited (AMEC) assumed the role of Engineer of Record for the TSF embankment as of 28 January 2011.

3) Renumbering of embankment instrumentation

KP provided the historical raw instrumentation data collected from the impoundment instrumentation. The raw data was reprocessed, and working piezometers renamed to simplify data management. The revised naming convention for piezometers is presented on Drawings 2011AB.08 through 2011AB.16. The piezometric data is organized by planes and is presented in Appendix B.

4) Embankment instrumentation summary

In 2011, a site investigation and instrumentation installation program was conducted. During the program additional vibrating wire piezometers and slope inclinometers were installed, Table 1.2 summarizes previously and newly installed vibrating wire (VW) installations.

amec[®]

Mount Polley Mines Corporation Tailings Storage Facility 2011 Construction As-Built and Annual Review 30 March 2012

	Population			
Dam Class	at Risk [note 1]	Loss of Life [Note 2]	Environmental and Cultural Values	Infrastructure and Economics
Low	None	0	Minimal short-term loss No long-term loss	Low economic losses; area contains limited infrastructure or services
Significant Temporary only Unspecified No significant loss or deterioration of fish or wildlife habitat Loss of marginal habitat only Restoration or compensation in kind highly possible No significant loss or deterioration of fish or wildlife habitat		Loss of marginal habitat only Restoration or compensation in kind	Losses to recreational facilities, seasonal workplaces, and infrequently used transportation routes	
High	Permanent	10 or fewer	Significant loss or deterioration of <i>important</i> fish or wildlife habitat Restoration or compensation in kind highly possible	High economic losses affecting infrastructure, public transportation, and commercial facilities
Very High	Permanent	100 or fewer	Significant loss or deterioration of <i>critical</i> fish or wildlife habitat Restoration or compensation in kind possible but impractical	Very high economic losses affecting important infrastructure or services (e.g. highway, industrial facility, storage facilities for dangerous substances)
Extreme	Permanent	More than 100	Major loss of <i>critical</i> fish or wildlife habitat Restoration or compensation in kind impossible	Extreme losses affecting critical infrastructure or services (e.g. hospital, major industrial complex, major storage facilities for dangerous substances)

Table 1.1: CDA (2007) Consequence Classification Scheme

Note 1. Definitions for population at risk:

None – There is no identifiable population at risk, so there is no possibility of loss of life other than through unforeseeable misadventure.

Temporary – People are only temporarily in the dam-breach inundation zone (e.g. seasonal cottage use, passing through on transportation routes, participating in recreational activities).

Permanent – The population at risk is ordinarily located in the dam-breach inundation zone (e.g. as permanent residents); three consequence classes (high, very high, extreme) are proposed to allow for more detailed estimates of potential loss of life (to assist in decision-making if the appropriate analysis is carried out).

Note 2. Implications for loss of life:

Unspecified – The appropriate level of safety required at a dam where people are temporarily at risk depends on the number of people, the exposure time, the nature of their activity, and other conditions. A higher class could be appropriate, depending on the requirements. However, the design flood requirement, for example, might not be higher if the temporary population is not likely to be present during the flood season.

Piezometer readings in 2011 indicated the following general trends for the TSF embankment:

- Pore pressures in foundation soils in and around the TSF embankment were noted as stable with minor fluctuations, except for D1 where upward trending piezometer readings are noted. Newly installed piezometers appear to have stabilized but insufficient data has been collected to show any trends since installation.
- Pore pressures in the till core are found to be stable, with a slightly increasing trend in response to the rising pond level.
- Pore pressures in filters and drains remained unchanged throughout the year.
- Pore pressures in the tailings and upstream fill experienced an upwards trend in response to the rising pond level. Piezometers installed at lower elevations within the tailings experienced lower response relative to the piezometers near the pond elevation, due to the under-drainage system.

Embankment	Previously Installed		2011	Total (Eurotional)	
Empankment	(Functional)	(Non-functional)	Installed	Total (Functional)	
Main	40	26	15	55	
Perimeter	10	9	5	15	
South	8	2	3	11	
Total	58	37	23	81	

Table 1.2: Piezometer Summary

As part of the 2011 site investigation three (3) additional inclinometers were installed in the embankment for a total of seven (7) functioning slope inclinometers as shown in Table 1.3. Newly installed slope inclinometers were not initialized until January 24th, 2012. The last 2011 reading of site slope inclinometers was conducted on September 6th. The inclinometer data collected in early 2012 has been included as part of this report, and is presented in Appendix B.

Table 1.3:	Slope Inclinometer Summary
------------	----------------------------

Embankment	Previously Installed		2011	Total (Functional)
Lindankinem	(Functional)	(Non-functional)	Installed	
Main	4	1	2	6
Perimeter	0	0	1	1
Total	4	1	3	7

5) Significant changes to dam stability and/or surface water control.

There were no significant changes to dam stability. Based on limit equilibrium stability analyses, the 2.1 m Stage 7 crest raise had a negligible impact on the factor of safety of the dams, with values still in excess of the minimum required 1.3 under static loading, short term construction conditions.

The runoff diversion ditch near Corner 4 at the southwest corner of the TSF was relocated approximately 30 m upslope to accommodate the 2011 extension of the embankment in that area. No other significant changes to surface water control were implemented in 2011.

6) For major tailings impoundments, as described in Part 10.5.2 of the Health, Safety and Reclamation Code for Mines in British Columbia, all operating dams shall have a current Operations, Maintenance and Surveillance (OMS) Manual. The annual report shall indicate the latest revision date of the OMS Manual.

The OMS manual was last updated by MPMC in March 2010, and requires an update in 2012.

7) Scheduled date for formal Dam Safety Review (ref. Canadian Dam Association, Dam Safety Guidelines).

A formal Dam Safety Review in planned to be conducted in 2016 or during detailed closure design, whichever is earliest.

8) Summary of 2011 construction.

AMEC was present on site for critical, non-routine aspects of foundation preparation and fill placement. During this period, AMEC verified that construction methods employed were consistent with design expectations, material specifications were adhered to, and monitoring and testing requirements were understood by MPMC personnel. AMEC's time on site was also used to verify that daily technical/progress reports were being completed properly, QA/QC and reporting responsibilities were thoroughly understood by all parties, and lines of communication between the site and AMEC office-based support were clearly established and functional. Once AMEC was satisfied that the MPMC's field inspectors were fully trained and prepared to undertake the construction monitoring and reporting role with remote support required by AMEC, AMEC reduced their monitoring presence to monthly visits, with monitoring of construction progress carried out via reports and photographs issued by MPMC. Actual timing of AMEC's site visits varied somewhat to align with key construction activities such as foundation preparation and approval, and till core trench approval.

Stage 7 construction involved raising the crest of the embankment to a minimum elevation of 960.1 m. The 2011 construction began mid-spring with placement of upstream fill (Zone U), and was completed by mid-November with placement of NAG rock (Zone C). The majority of construction monitoring was conducted directly by MPMC field inspectors with submission of daily reports to AMEC during placement of critical materials: Till Core (Zone S) and Filter (Zone F). Zone S and Zone F placement was conducted by Peterson Contracting Ltd. Zone U, Transition (Zone T) and Zone C fills were placed by MPMC directly. The abutment preparations were also conducted by MPMC.

9) Overall performance of the Tailings Management Facility

Observations and data obtained over the course of 2011 indicate that the tailings management facility continues to perform in a satisfactory manner. The dam raising carried out in 2011 achieved conformance with design intent.

1.0 INTRODUCTION

The Mount Polley Mine is located in central British Columbia, approximately 60 km northeast of Williams Lake. The main access route is via Likely Road. The turnoff to the Mine is located approximately 1.5 km east of Morehead Lake with the Mine located another eleven km to the southeast, along the Bootjack Lake Forest Service Road. The Mount Polley mine commenced production in June 13, 1997. Ore is crushed and processed by selective flotation to produce a copper-gold concentrate. The mill throughput rate is approximately 20,000 tonnes per day (approx. 7.3 million tonnes per year). Mill tailings are discharged as slurry into the Tailings Storage Facility (TSF) located on the south area of the Mine property.

Tailings slurry is conveyed from the Concentrator to the TSF via a tailings discharge pipeline. The tailings are deposited into the impoundment through moveable or fixed spigots on the embankment crest. A floating reclaim pump recycles process water from the supernatant pond in the TSF for use in the mill processing circuit. Sediment ponds and seepage collection ponds are designed to intercept runoff from the surface and seepage from the embankment respectively. Drains, instrumentation and monitoring wells are constructed in and around the TSF to assist in monitoring the performance of the facility.

Drawing 2011AB.01 presents a plan of the as-built condition of the Mount Polley Mine site. Figure 1.1 shows an aerial view of the site from 2011.

MPMC milled approximately 28 M tonnes of ore between start-up in 1997 and October 2011. The mine entered into care and maintenance status for the period from October 2001 to February 2005, operations re-started in March 2005.

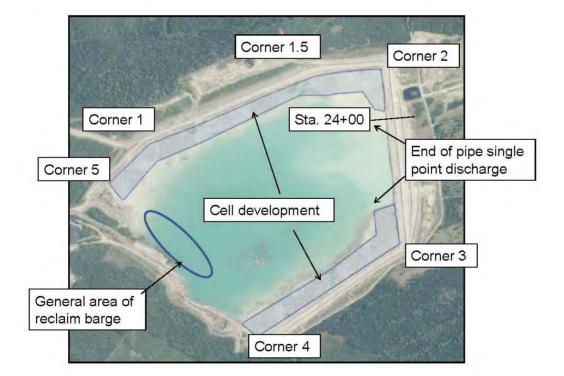
The starter dam for the TSF embankment was constructed in 1996 to a crest elevation of 927.0m. The starter dam was constructed out of a homogeneous compacted till fill. Discharge of the tailings into the impoundment commenced in the summer of 1997. The TSF embankment was raised in subsequent years as follows:

- To elevation 934.0 m in 1997.
- To elevation 936.0 m in 1998.
- To elevation 937.0 m in 1999.
- To elevation 941.0 m in 2000.
- To elevation 942.5 m in 2001.
- To elevation 944.0 m in 2004.
- To elevation 946.0 m in 2005.
- To elevation 949.0 m in 2006.
- To elevation 950.9 m in 2007.
- To elevation 951.9 m in 2008.
- To elevation 953.9 m in 2009.
- To elevation 958.0 m in 2010.
- To elevation 960.1 m in 2011.

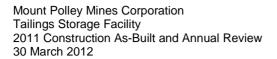
The TSF embankments are zoned earth and rockfill dams (see drawings 2011AB04 through 06). In 2011 MPMC crews and equipment were responsible for the placement of Zone U, Zone T, and Zone C. Placement of Zone S and Zone F was performed by Peterson Contracting Ltd. (Contractor).

This report documents the construction monitoring, construction methods, and the results of the quality control testing performed during the 2011 construction of the Mount Polley TSF 2.1 m crest raise to approximately El. 960.1 m. This report also represents the 2011 annual review of the MPMC TSF.

VM00560A.A.1 VM00560 - 2011 As-built Annual review report_FINAL_30Mar2012.docx


2.0 OPERATION OF THE TAILINGS STORAGE FACILITY

2.1 General


The Mount Polley TSF is comprised of one overall embankment that is approximately 4.2km in length. The embankment is subdivided into three (3) sections; referred to as the Main Embankment, Perimeter Embankment and South Embankment. Heights vary along the embankment and are approximately 48 m, 30 m, and 20 m for the Main, Perimeter and South embankments respectively. As-built sections of the embankment are shown on Drawings 2011AB.04 through 2011AB.06.

2.2 Tailings Discharge and Beach Management

Tailings are transported from the mill to the impoundment via an approximately 7 km long HDPE pipeline. As shown in Figure 2.1, 2011 cell construction was carried out from Corner 5 advancing along the Perimeter embankment to the Main embankment to about Sta. 24+00. Insufficient tailings line pressure prevents cell construction along the central portion of the Main embankment and single point discharge is employed (approximately Sta. 24+00) to facilitate the beach development. Discharge from Sta. 24+00 was maintained for about three (3) weeks after which discharge was relocated to Corner 4 for the resumption of cell development. Cellular development was employed along the South embankment and around Corner 3 where single point discharge was resumed. The pipeline design flow is 20,000 tpd at about 35% solids by dry weight.

2.3 Process Water Reclaim

The tailings pond supernatant is recycled to the mill for use as process water. It is transported via the reclaim pumping system, which consists of a barge, pipeline and booster pump station. The reclaim pipeline system returns water from the TSF to the mill for use in the mill process.

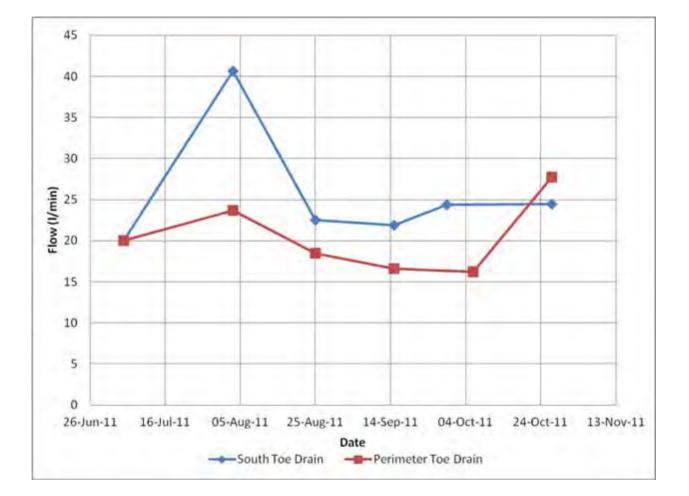
2.4 Operations, Maintenance and Surveillance Manual

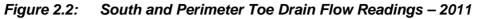
The Operations, Maintenance and Surveillance (OMS) Manual was updated in 2010. Due to the change in Engineer of Record, the addition of new instrumentation and an updated instrumentation surveillance and reporting plan the TSF management component of the OMS manual will be updated in 2012.

2.5 Freeboard Requirements

The freeboard requirement for the TSF is 1.3 m to allow for storage of the 72-hour PMP event, plus an allowance for wave run-up above the resultant pond level.

2.6 Seepage Collection Ponds


Seepage collection ponds are located downstream of each of the three embankments that create the TSF. The seepage collection ponds collect seepage from the embankments, embankment drain discharge and direct runoff from the embankment and reporting catchments. Records indicate that the ponds were excavated into low conductivity glacial till. The ponds were observed to be in good condition.


2.7 Drain Flow Data

Flows from the upstream toe drain and foundation drains of the Main Embankment are measured at the sump located at the Main Embankment seepage collection pond. Upstream toe drains from the Perimeter and South Embankments discharge into ditches which carry the flow to their respective seepage collection ponds where it is measured at the end of pipe. Water from the upstream toe and foundation drains is recycled to the TSF.

Measurement of drain flows into the Main Embankment requires that the sediment control pond be pumped down to a low level to allow for safe entry into the sump. In 2011, Main Embankment drain readings were not measured and MPMC was out of compliance with the OMS requirements. MPMC is working to revise the monitoring system in an attempt to capture drain flow readings in compliance with the OMS requirements. Frequency of drain flows from the South and Perimeter embankments varied from monthly to bi-weekly as weather permitted. South and Perimeter Embankment drain reading for 2011 are presented in Figure 2.2. There is no note of any turbidity observed in the drain water which indicates that the filters associated with the drains are functioning as intended.

3.0 2011 DAM DESIGN

The drawings appended to this report include design and as-built sections of the TSF embankment current as of the end of 2011. The drawings, in plan view, show the locations of the readout stations for the instrumentation (piezometers, inclinometers), and in section view show the relative placement of the instruments within the embankment and its foundation.

The 2011 Stage 7 TSF embankment raise design was to an elevation of 960.5 m. The design is presented on drawing 2011AB.03 and is as follows:

Upstream Fill (Zone U)

- Comprised of tailings or waste rock where tailings placement infeasible;
- Cell construction is to be utilized wherever possible;
- Reworking of the tailings is needed to ensure proper distribution within the cell; and
- NAG/PAG rock fill can be utilized where the tailings placement is not possible.

Till Core (Zone S)

- Comprises compacted, low hydraulic conductivity till fill;
- Material is to be well graded and as specified in 2011AB.03;
- Minimum 5.0 m in width;
- Continuous full width overlap between the previous stage 6 and stage 7;
- Placed in maximum of 300 mm thick lifts;
- Compaction of minimum of 95% of maximum density as determined by the Standard Proctor compaction test (ASTM D 698); and
- Periodic sampling from the borrow pit and dam surface to verify suitability of the material.

Filter (Zone F)

- Comprises well-graded sand and gravel
- Material is to be free draining and as specified in 2011AB.03;
- Minimum 1.8 m in width;
- The transition between new and existing filter material is to be continuous with a minimum of 1.0 m overlap;
- Placed in maximum of 600 mm thick lifts;
- Compacted by a 10 ton vibratory smooth drum;
- Periodic samples are to be collected for laboratory testing.

Transition (Zone T)

- Comprises relatively fine waste rock
- Material is to be free draining and as specified in 2011AB.03;
- New material is to be placed in maximum of 600 mm thick lifts;
- Minimum 1.8 m in width;
- Compacted by uniform routing of haul trucks and spreading equipment.

Page 10

Rock Fill (Zone C)

- Comprises run-of-mine waste rock
- Nominal maximum particle size of 1m;
- Pavement like surface between consecutive layers is to be scarified.

4.0 CONSTRUCTION MONITORING PROGRAM

Construction Monitoring during the 2011 construction season was mainly carried out by MPMC personnel. AMEC's Support Engineer reviewed daily construction records and performed regular site visits to monitor the quality of construction and assess MPMC's monitoring of the construction.

4.1 AMEC Support Engineer

AMEC's Support Engineer provided on-site supervision during the following periods:

- Pre-construction Meeting: May 31 to June 1
- Construction Kick-off: June 13 to June 16, June 20 to June 24, June 27 to June 28
- July Site Visit: July 25 to July 28
- August Site Visit: August 19 to August 25

While on site the responsibilities of AMEC's Support Engineer were as follows:

- Monitor, train, and assist MPMC personnel with the requirements of construction monitoring;
- Monitor, sample, and requisition tests of the borrow areas, as required;
- Monitor and perform QA testing of compacted till core soils, as required;
- Review and approval of proposed borrow soils;
- Review and approval of transition and filter material, processing methodology and monitoring practices;
- Monitor and approve the filter trench excavation and preparation;
- Monitor and approve abutment preparation;
- Address any concerns or out-of-compliance situations observed and recorded during construction;
- Carry out the quality control field and laboratory testing;
- Direct the MPMC personnel to address the survey requirements, results, etc.; and
- Meet as required with MPMC to review the construction program.

While in the office the responsibilities of AMEC's Support Engineer were as follows:

- Review daily construction reports submitted by MPMC personnel;
- Review compaction results submitted by MPMC personnel;
- Plot and review instrumentation readings submitted by MPMC personnel;
- Address any concerns or out-of-compliance situations noted by MPMC personnel; and
- Coordinate with MPMC personnel and AMEC's Project Manager/Senior Engineer.

4.2 AMEC Senior Support

AMEC's Senior support Engineers visited site on the following dates:

- T. Martin: June 20/21
- D. Dufault: July 25/26

4.3 MPMC Field Inspector

MPMC Field Inspectors were responsible for the following:

- Monitor and maintain a photographic record of ongoing construction activities;
- Review borrow pit material to verify material consistency;
- Delineate embankment zones with stakes (every 50 m);
- Perform QC compaction testing of placed Zone S material (as per material placement specifications);
- Collect material samples for QC laboratory testing;
- Conduct as-built surveys of various zones;
- Prepare and submit daily construction reports;
- Collect and submit instrumentation data; and
- Report out-of-compliance situations to AMEC's Support Engineer.

4.4 QA/QC Testing

A summary of the testing requirements is given in Table 4.1.

Table 4.1:	Embankment Material Types and QA/QC Testing Requirements
------------	--

Material Type	Construction Testing Requirements
Zone S – Till	Source Classification
Core	D422-07: 1 per 10,000 m ³ per source.
	In-Place Testing
	D6780-05: 1 per lift per 150 linear m or 1 per day per lift;
	D422-07: 1 per 10,000m ³ offset to source.
Zone F – Filter	Source Classification
	D422-07: 1 per 5,000 m ³ per source.
	In-Place Testing
	D422-07: 1 per 5,000 m ³ offset to source.
	Visual in-place inspection of compaction and zone dimension.
Zone T – Confirmation of waste rock inertness, as required.	
Transition	D422-07: 1 per 5,000m ³ .
Visual in-place inspection of material size, compaction, and zone dimension.	
Zone C –	Confirmation of waste rock inertness, as required.
Rockfill	Visual in-place inspection of material size and placement.
Zone U – Upstream fill	Visual in-place inspection of material size and placement.

During the 2011 construction season, the testing frequencies as outlined above were generally maintained.

4.5 Instrumentation Monitoring

During the 2011 construction period, MPMC personnel monitored the vibratory wire instrumentation along the embankments generally once every two weeks. Inclinometers were monitored generally every two weeks during the 2011 construction period; inclinometer readings were offset a week from the piezometer readings.

For the period after the 2011 construction period through the end of 2011, the recommended instrumentation surveillance schedule was not maintained. Compliant monitoring frequency was re-established in January 2012.

5.0 2011 TSF STAGE 7 EMBANKMENT RAISE CONSTRUCTION OVERVIEW

5.1 General

Construction of the Stage 7 raise entailed a raise of approximately 2.1 m from approximate El. 958.0 m to El. 960.1 m. Till core construction period took place between June 13 and September 21, 2011. This section provides a brief summary of the 2011 construction activities for the TSF. Drawings AB2011.04 through AB2011.06 show the plan view and as built sections of the embankment in relation to the design. A selection of photographs showing various stages of the 2011 TSF construction are presented in Appendix C.

5.2 Abutment Preparation

To accommodate the 2011 embankment raise, the south and perimeter abutments were extended. Abutment preparation was conducted as follows:

- Bulk removal of overburden (including previously placed waste rock fill) by MPMC personnel and equipment.
- Test pits were conducted to confirm that a minimum of 2 m of till was present beneath the embankment core. The test pits were located upstream and downstream of the core limits such that the existing soils found under the till core contact were not compromised. Bedrock was not encountered in any of the test pits.
- To accommodate a drainage trench detail implemented in past raises, aligned along the toe of the dam, a ditch approximately 1.0 m in depth and 2.0 m in width was excavated along the Perimeter and on the South Embankments downstream of the abutment core extensions. On the South Embankment it was noted that a corrugated drainage pipe was present. The pipe was extended and placed at the base of the trench. No drainage pipe was noted on the perimeter embankment. The trench was than backfilled with filter material (Zone F).
- Prior to placement of the drainage blanket the exposed native abutment material was proof-rolled with a 10 ton vibratory smooth drum compactor.
- The drainage blanket was placed to the full extents of the embankment shell. The blanket consisted of a 0.3 m thick lift of Zone F material overlain by a 0.3 m thickness of Zone T material.

5.3 Fill Placement

5.3.1 Zone U – Upstream Shell

The upstream shell was constructed of end of pipe spigotted tailings utilizing cells, reworked with a dozer, and shaped with the aid of en excavator; the majority of this work was carried out without AMEC supervision. Where the tailings could not be used for shell construction due to pipeline and pumping limitations, NAG waste rock was used, as shown on Figure 2.1. This occurred along the central portion of the Main Embankment between Corner 2 and Corner 3. The NAG was transported by haul truck and placed/shaped by excavators and dozers. Prior to 2011 Zone S placement, AMEC's Support Engineer inspected the NAG waste rock to ensure that large boulders (diameter > 1 m) were not placed near the Zone U/Zone S interface.

5.3.2 Zone S – Till Core

The placement of Zone S material was performed by the Contractor and generally was executed as follows:

- Prior to placement of the first lift of till core for the 2011 raise the existing Zone S/abutments were prepared by proof-rolling with a 10 ton vibratory smooth drum roller. Areas that were noted to be soft or affected by the frost were removed and replaced with approved Zone S material.
- The top 0.1 m of the prepared surface was scarified with the aid of a dozer/grader, to promote good bonding between successive lifts.
- The surface was moisture conditioned as required to further promote proper bonding of successive till lifts.
- The till was placed in 0.3 m thick lifts via scrapers, and was spread with the aid of dozers, excavators, and graders.
- Compaction was achieved by scraper trafficking and a 10 ton smooth drum vibratory compactor.
- On average, for every two (2) to three (3) lifts placed, the downstream face of the till was trimmed and shaped by an excavator to maintain design lines. The extra width trimmed was required to ensure that the full design width of till was compacted.

5.3.3 Zone F – NAG Filter Rock

The material utilized for Zone F was crushed on site and stockpiled around the embankment for rehandling during placement within the dam. Haul trucks were used to stock pile and transport the material to the TSF embankment. Refer to Drawing 2011.02 for stock pile locations used during the 2011 construction.

Prior to placement of Zone F material, the previously placed filter material was exposed to ensure vertical continuity of the filter. This was carried out by excavator as part of the trimming process for the core. The filter material was placed on the embankment by the Contractor in

0.6 m lifts. The material was transported by dump trucks and spread/shaped with the aid of excavator, grader, and a loader.

The placed Zone F material was compacted in conjunction with Zone T material, by 10 ton smooth drum compactor and scraper trafficking.

5.3.4 Zone T – Transition NAG Rock

AMEC understands that historically the Zone T material was produced by manually sorting Zone C material with an excavator. Sorting of Zone C material required experienced operators; was time consuming; and required constant supervision. Initially, Zone T fill was manually sorted during the Stage 7 construction; however, during the initial placement of this material it was noted that the required gradation and consistency of the material was not being achieved. MPMC switched to a manufactured product with a nominal particle size of 75mm and a gradation and distribution that satisfied the required specifications.

Prior to placement of the Zone T material, the interface between the different lifts was exposed or/and scarified to remove any pavement like surfaces. Zone T material was hauled by MPMC and placed by MPMC in 0.6 m to 1.2 m thick lifts with the aid of a loader and grader. Additional material was also placed to provide access ramps utilized by scrapers. These ramps enabled scrapers to place additional till lifts. After the core and the filter material were constructed for the season, the previously placed transition ramp was reshaped to form the transition zone with the aid of an excavator. The compaction of the transition zone was achieved via routing of scrapers and haul trucks.

5.3.5 Zone C – Downstream Shell NAG Rock

Zone C material was placed by MPMC. Prior to placement, where pavement like surfaces had developed the surface was scarified with the aid of grader/dozer, to avoid continuous, low hydraulic conductivity zones within the rockfill shell, and thus promote downward drainage through the rockfill. The NAG rock was transported from active mining areas to the embankment via haul truck and placed and spread by dozers.

5.4 Survey Control

Survey control requirements for the 2011 raise of the TSF included the following:

- Staking out the upstream and downstream of the Zone S; the stakes were generally Placed every 50m along the entire length of the embankment;
- Maintaining the downstream crest stationing during embankment construction;
- Verifying that a 5m width was maintained during construction;
- Establishing and verifying the Zone F/T transition line for placement of Zone T material;
- Confirming that the minimum width of Zone F and Zone T were achieved by conducting spot checks;
- Survey pick-up of the locations of in-situ density tests;
- Collecting and storing data as required for the as-built record; and
- Providing location and elevation data as required by the AMEC Support Engineer.

5.5 Quality Control and Quality Assurance Testing

QA/QC testing of the fills used in the construction of the embankment involved on-site and offsite tests. On-site testing was restricted due to the limited availability of the on-site laboratory. The results of these tests are presented in Appendix A.

A summary of the quantities of each different material type and the number and types of tests performed on the fills is provided in Table 5.1.

Material Type	Source Of Material	Volume Placed (m ³)	QA/QC Tests Performed
Zone C – Downstream Shell NAG Rock	Springer Pit (ROM)*		Visual
Zone T – Transition NAG Rock			31 gradations (MPMC – from stockpile) 4 Gradations (AMEC – from stock piles)
Zone F – NAG Filter Rock	Springer Pit (Filter Crush)	19,550	5 Gradations (MPMC As placed) 3 Gradations (AMEC – As placed) 5 Gradations (AMEC – from stock piles)
Zone S - Till Core	Perimeter and Barge Borrow Pits	54,300	5 Proctor 9 Gradation 7 Atterberg limits 43 ND field density (AMEC) 235 MDI field density(MPMC) 9 Laboratory Moisture tests
	Total Fill Volume Placed	283,350	

 Table 5.1:
 TSF Summary of Material Quantities and Laboratory testing

*Run of mine material (no processing required)

5.5.1 Zone S – Till Core

During the 2011 construction season, two (2) separate borrow pits were utilized, the barge and perimeter borrows. In 2011, the main borrow source used was the perimeter borrow. This borrow pit is located downstream of the Perimeter Embankment between Corner 1 and Corner 1.5. The material sourced from the barge borrow was placed near Corner 5, and was only used for the small section between Corner 1 and Corner 5 of the Perimeter Embankment. The locations of the borrow pits are shown on Drawing 2011AB.02. Till material from both borrows was fairly consistent and was classified as a low plastic Silt, sandy, some clay with some to trace gravel.

Prior to commencement of the 2011 construction season; the MDI testing unit was calibrated as per ASTM 6780-05. In addition, a proctor test was conducted to confirm the maximum density and optimal moisture content as per ASTM D2216-10 of the glacial till to be used for Zone S construction. The in-situ density and moisture content of the compacted fill were determined by performing MDI tests (ASTM D6780-05) by MPMC personnel. AMEC carried out additional QA testing with a nuclear densometer (ASTM D6938-10, ND). Where field test results indicated that the specified 95% Standard Proctor Maximum Dry Density (SPMDD) was not achieved, the

area was re-compacted until satisfactory test results were achieved. Samples of till were also collected and periodically sent to AMEC's Prince George lab facility for geotechnical index testing. Additional detail regarding the QC/QA tests was presented in Table 5.1 with testing results presented in Appendix A.

The SPMDD value used in the field was chosen based on an average of the SPMDD lab results for the 2010 construction season and/or based on visual classification of the soil and/or based on the moisture content and/or the results of field scale test compactions and/or updated SPMDD results, whichever was most appropriate.

New average SPMDD reference values were calculated and applied in the field as new proctor data became available. In general, the fills achieved 95% SPMDD even when a conservative SPMDD reference value was used, due to the compactive effort applied by construction traffic and compaction equipment. Each test result was recorded and entered into a spreadsheet. Plots of the test results were prepared and are presented in Appendix A.

5.5.2 Zone F – NAG Filter Rock

Filter Zone F was produced by running run-of-mine NAG waste rock through the mill crusher. The processed material was fairly consistent and was slightly coarse at the bottom end but was deemed acceptable. Samples of this material were collected and are presented in Appendix A.

5.5.3 Zone T – Transition Zone

As discussed in Section 5.3 the method of producing an acceptable transition zone material was adjusted in 2011. The new processed material consistently satisfied the required specification and was deemed acceptable. Samples of this material were tested and the results are presented in Appendix A.

5.5.4 Zone C – Downstream Shell NAG Rock

Downstream Shell Zone C rockfill was visually checked to ensure filter compatibility with the upstream adjacent Zone T material. Standard practice of placing excessively coarse material towards the downstream limit of the fill was adhered to and the Zone C material placed was deemed acceptable.

5.6 Conformance of 2011 Construction with Design Intent

Based on AMEC's observations of the construction, review of reports prepared by MPMC when AMEC was not on site, and the QA/QC records, the 2011 Stage 7 raise of the dams was carried out in conformance with design intent.

6.0 INSTRUMENTATION MONITORING

6.1 General

The design and construction monitoring of the TSF embankments from mine start-up to early 2011 had been completed under the direction of KP. AMEC assumed the role of Engineer of Record for the TSF embankment as of 28 January 2011. KP provided the historical raw instrumentation data collected from the impoundment instrumentation. The raw data was

reprocessed, and working piezometers renamed to simplify data management. The revised naming convention for piezometers is presented on Drawings 2011AB.08 through 2011AB.16. The piezometric data organized by planes is presented in Appendix B

6.2 New Instrumentation

In 2011, a site investigation program was conducted. During the site investigation additional vibrating wire piezometers and slope inclinometers were installed. Table 1.2 and Table 1.3 summarize the status of vibrating wire piezometers and inclinometers installed in the TSF.

6.3 Piezometers

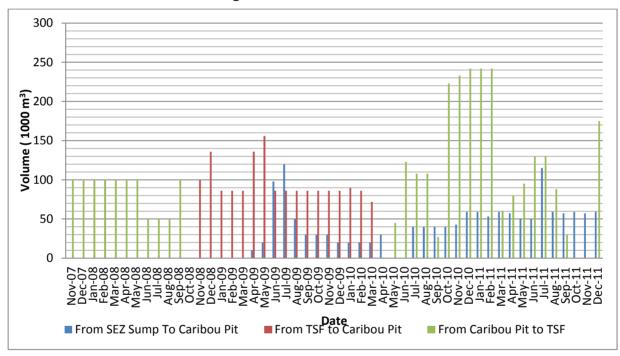
In 2011 the piezometers indicated the following general trends for the TSF embankment:

- Pore pressures in foundation soils in and around the TSF embankment were noted as stable with minor fluctuations, except for D1 were an upward trend is noted. Newly installed piezometers appear to have stabilized but insufficient data has been collected to show any trends at this point.
- Pore pressures in the till core are found to be stable, with a slightly increasing trend in response to the rising pond level.
- Pore pressures in filter and drains remained unchanged throughout the year.
- Pore pressures in the tailings and upstream fill experienced an upwards trend in response to the rising pond level. Piezometers installed at a lower elevation within the upstream tailings experienced lower response relative to the piezometers near the pond elevation, likely the result of proximity to the upstream under-drainage system.

6.4 Slope Inclinometers

In general, in 2011, the inclinometers indicated the following trends for the TSF embankment:

- SI11-02 showed an approximately 5 mm displacement over the course of the entire year. About half of that movement was observed sometime after or near completion of construction. Regular readings were not conducted during construction. The observed displacement is well within tolerable limits.
- SI06-02 and SI06-03 also displayed slight displacements. Since initialization of these slope inclinometers (in 2006), cumulative lateral displacement of roughly 5 mm has been observed, with no well-defined discrete movement zone. These movements are well within tolerable limits.
- No notable displacement has been noted on SI06-01, SI11-01, and SI11-02.
- SI11-04 has to date indicated displacement suggestive of compression rather than lateral displacement. Such a pattern of displacement sometimes occurs as a result of the installation process. This slope inclinometer should be reinitialized when the compression displacement stabilizes.



7.0 WATER MANAGEMENT AND IMPOUNDMENT RAISING SCHEDULE

7.1 General

MPMC maintains the water/mass balance model which is updated monthly with actual tonnages (milled/mined), precipitation data and surveyed pond water elevations to maintain the accuracy of the model and pond level projections. The Mount Polley balance has not been reviewed by AMEC. This section therefore provides a general overview of the water balance and site water management as provided by MPMC.

It is AMEC's understanding that currently the total inflow from precipitation and surface runoff exceeds losses from evaporation and storage of water within the voids of deposited tailings. Thus, MPMC mine site is operating under a net annual water surplus condition, with the accumulating surplus being stored in the TSF and the Caribou Pit. MPMC transfers water as needed between the TSF and the Cariboo Pit, with the volumes transferred, as provided by MPMC, shown in Figure 7.1.

7.2 Site Water Management

Site water management is illustrated on Figure 7.2 and is described below:

• Northeast Zone Pit water is pumped into the "Long Ditch". The Long Ditch also intercepts surface runoff along with flows via a buried pipeline from "Joe's Creek" that collects water from dump runoff at the northern end of the site. The Southeast Rock Dump Site (SERDS) Ditch feeds into a pond (along with the open-flow Long Ditch). This water is conveyed via a buried pipe until just past the Bootjack Creek Bridge crossing (not identified on the map) where it then flows back into an open ditch and into the Perimeter Embankment Seepage Collection Pond. This water is collected and pumped into the TSF.

- The Anaerobic Biological Reactor (ABR) receives toe drain flow, and discharges out to a pond and to the Main Seepage Pond, from where it is pumped back into the TSF.
- The Mill Site Sump is bled into the tailings line and thus directed to the TSF.
- The reclaim water line runs adjacent to the tailings line, and transfers water from the reclaim barge in the TSF to the booster station (not labelled) and to the mill.
- Flows from the TSF toe drains and upstream under-drains report to the seepage collection ponds before being pumped back into the TSF.

7.3 Mass Balance

Survey and pond soundings of the impoundment area were last updated by MPMC personnel in August 2011. The updated survey data was used to create a revised storage elevation curve for the tailings impoundment, which was incorporated into the mass balance model. The updated mass balance model was then used to predict average tailings and pond level/volume within the TSF. In turn, that level plus the PMF event determines the required dam crest elevations and the dam raising schedule. A new bathymetric survey will be carried out when the pond becomes ice free in 2012.

The mass balance model is updated on a regular basis with actual tonnages (milled/mined) and surveyed pond water elevations to calibrate the model and increase the accuracy of pond level projections.

7.4 Overview of Mass Balance Model

The mass balance model projections are based on a number of parameters and assumptions, including those listed below:

- Projected tailings elevations in the TSF are on the basis of the tailings tonnages projected by the design mine plan and assumed in-situ dry density.
- Projected pond water levels do not take into account the water transferred between the TSF and the Cariboo Pit.

The TSF is required to have sufficient live storage capacity for containment of runoff from the entire contributing catchment area during a 24-hour PMP event. In addition, the TSF design also incorporates an allowance for wave run-up. Therefore, the normal and maximum operating pond levels are as follows:

- Normal Operating Level Water level at least 1.3 meters below the embankment crest; and
- Maximum Operating Level Water level is 1 meter below the embankment crest, which allows for the storage of the runoff from the design 24 hr duration PMP event above the normal Operating Level.

7.5 Dam Raising Schedule

MPMC is managing the site water balance, and only the corresponding projected pond elevations and respective dam filling schedule have been reviewed by the design engineer. The following section was provided by MPMC. The water balance projects that the current dam crest elevation of 960.1 m is sufficient until the end May 2012. To remain compliant and satisfy the 1.3 m freeboard requirement, a 0.3 m lift over the entire length of the embankment will be required in early spring 2012 accordingly. MPMC holds the option of transferring excess pond water into the mined out Cariboo Pit if required to satisfy freeboard requirements until the full 2012 embankment raise is realized.

The 2012 Stage 8 Embankment raise (3.4 m) to crest El. 963.5 m is targeted for completion by the end of September 2012. The impoundment filling curve with predicted and actual pond levels and embankment elevations through the 2012 season is presented in Figure 7.3.

7.6 Mine Planning

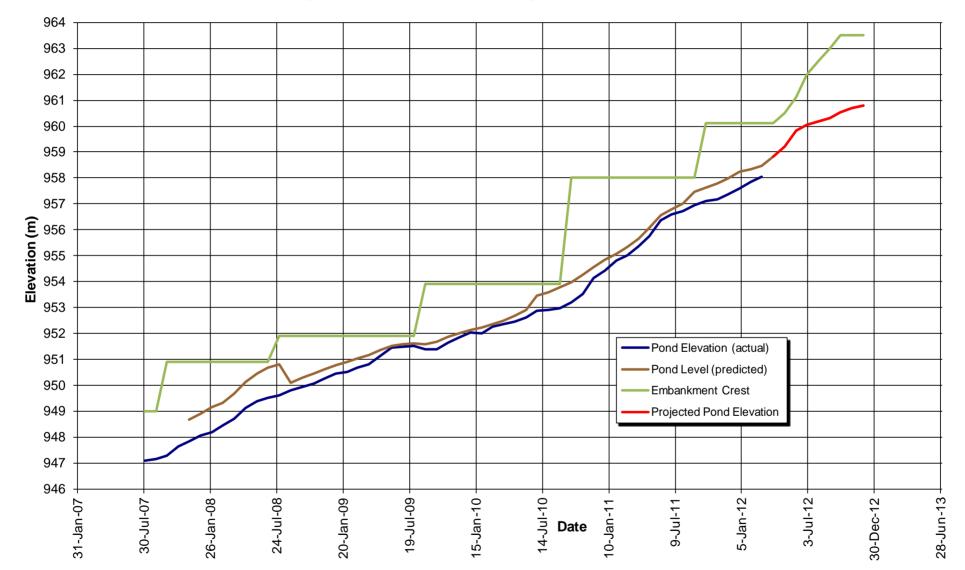

The 2016 Mine Plan remains unchanged and forms the basis for future dam raises.

Figure 7.3: Impoundment Storage Elevation Curve

VM00560A.A.1 VM00560 - 2011 As-built Annual review report_FINAL_30Mar2012.docx

8.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions drawn on the basis of this annual review and as-built report are as follows:

- 1. The TSF embankment was raised to a minimum crest elevation (till core) of 960.5 m in 2011.
- 2. The 2011 raise of the TSF embankment was carried out in conformance with design intent.
- 3. Monitoring of the TSF embankment via instrumentation and visual inspections indicated the following:
 - a. Surveys of inclinometers within the downstream shell of the dam indicate that movements are minor and well within tolerable limits.
 - b. Foundation pore pressures have been stable.
 - c. Pore pressures in the till fill of the dam have increased slightly due to the pore pressure increase of the tailings.
 - d. The TSF embankment is performing in accordance with its design intent.

Recommendations made on the basis of this annual review and as-built report are as follows:

- 1. A comprehensive review and update of the site water balance should be undertaken.
- 2. Toe drain flows need to be measured and recorded per requirements described in the OMS manual.
- 3. The OMS manual for the TSF is due for an update in 2012.

9.0 REPORT CLOSURE

This report has been prepared for the exclusive use of Mount Polley Mine Corporation for specific application to the area within this report. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. AMEC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. It has been prepared in accordance with generally accepted geotechnical and tailings dam engineering practices. No other warranty, expressed or implied, is made.

Respectfully submitted,

AMEC Environment & Infrastructure, a division of AMEC Americas Limited

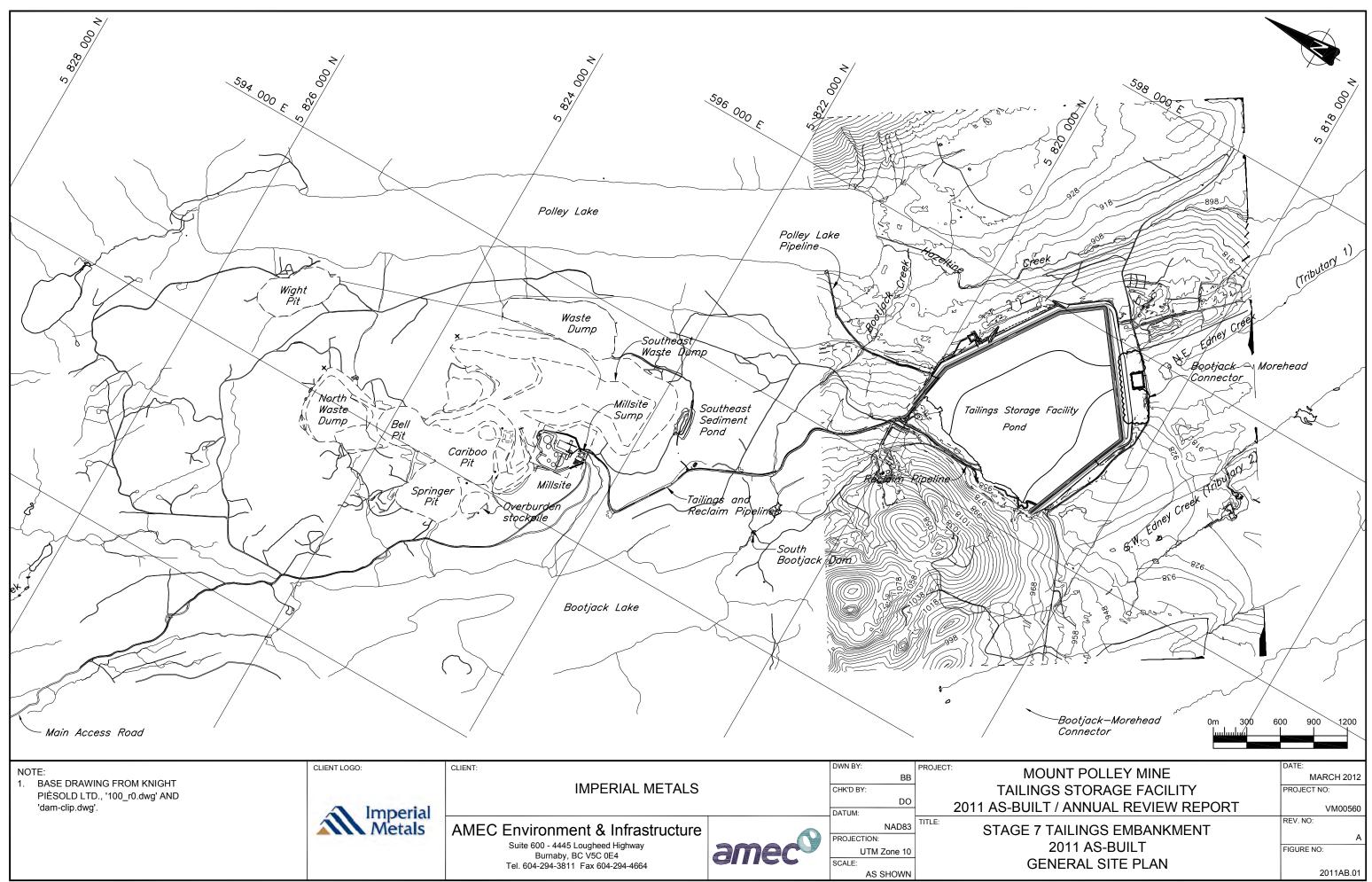
Reviewed by:

Dmitri Ostritchenko, EIT Geotechnical Engineer Steve Rice, P.Eng. Principal Engineer

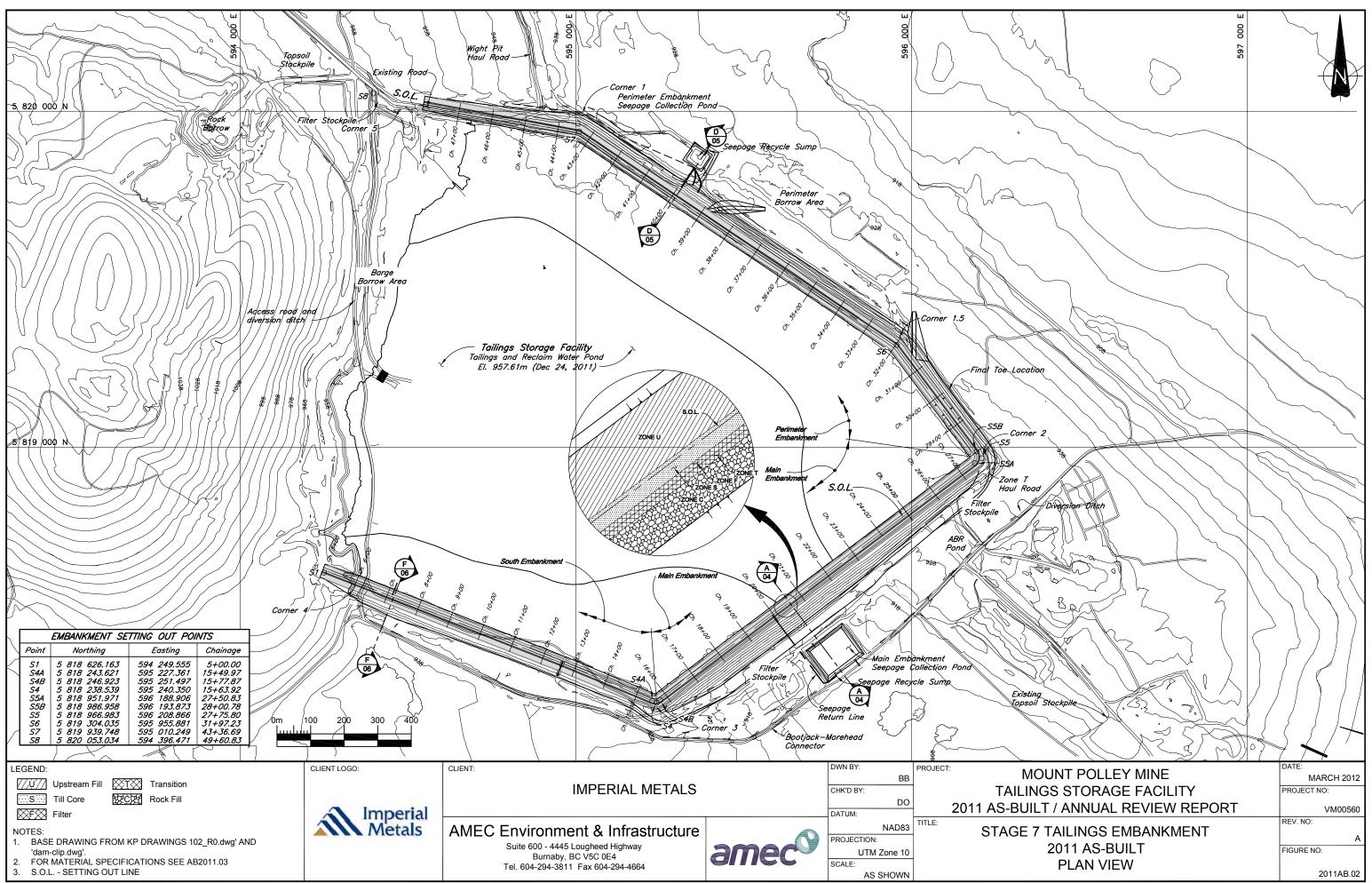
Original paper copies signed and sealed by Daryl Dufault P.Eng.

Daryl Dufault, P.Eng. Project Manager

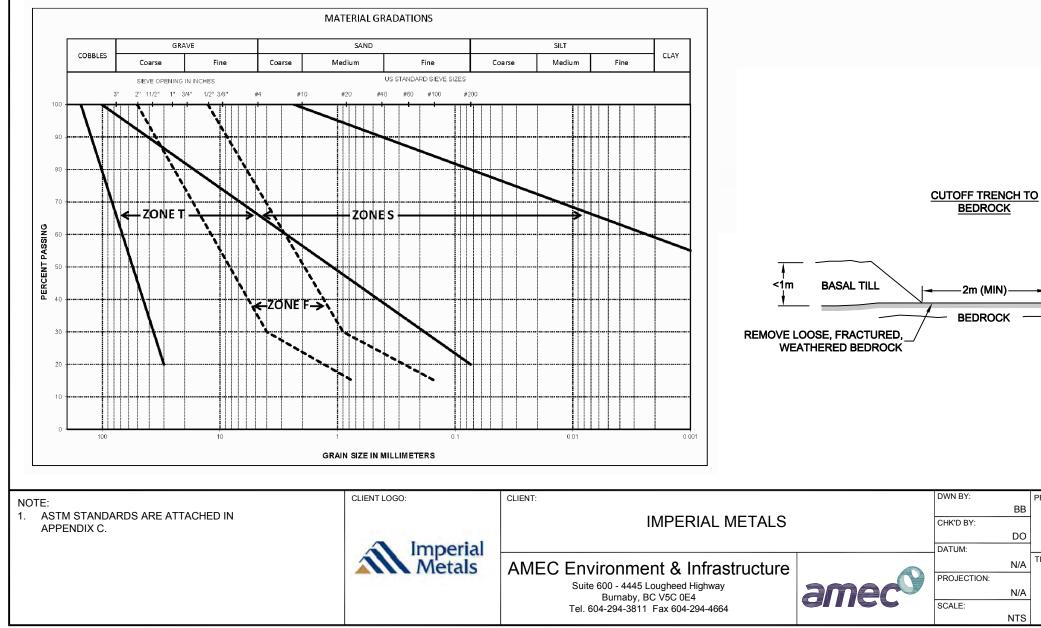
Todd E. Martin, P.Eng., P.Geo. Principal Engineer



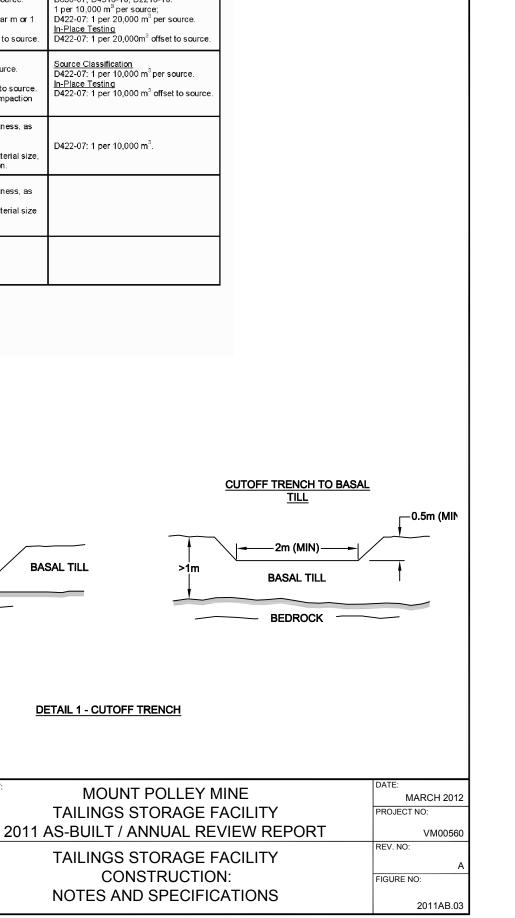
REFERENCES


- AMEC (2006). "Dam Safety Review Mt. Polley Mine Tailings Storage Facility", December.
- AMEC (2011). "Construction Manual 2011", 20 April.
- AMEC (2011). "Tailings Storage Facility Instrumentation Review and Recommendations", 14 June.
- CDA (Canadian Dam Association), 2007. Dam Safety Guidelines.
- KP (2005). "Mount Polley Mine Design of the Tailings Storage Facility to Ultimate Elevation", 18 June.
- KP (2007). "Mount Polley Mine Stage 6 Design of the Tailings Storage Facility", 18 June.
- KP (2011). "Mount Polley Mine Tailings Storage Facility Report on Stage 6B Construction", 25 January.
- KP (2011). "Mount Polley Mine Tailings Storage Facility Report on 2010 Annual Inspection", 25 January.
- Leps, T.M., 1970. Review of Shearing Strength of Rockfill. ASCE Journal of the Soil Mech. and Found. Eng. Div., SM4. July 1970. pp. 1159-1170.

DRAWINGS



S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.01.dwg - 2011AB.01 - Mar. 22, 2012 4:22pm - ben.brown



S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.02.dwg - 2011AB.02 - Mar. 22, 2012 4:22pm - ben.brown

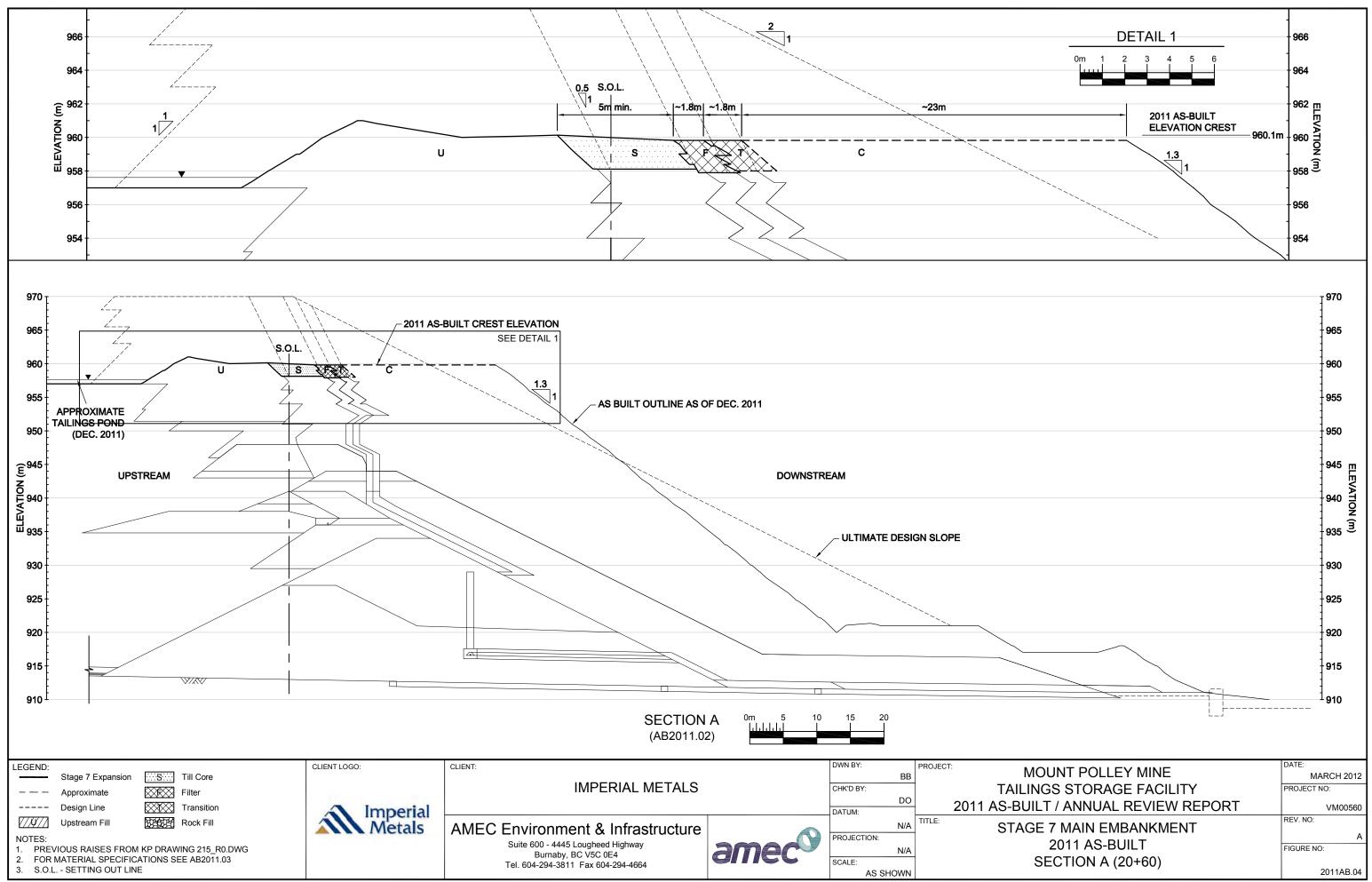
EMBANKMENT ZONE	DESCRIPTION	MATERIAL TYPE	SPECIFICATIONS	SUBGRADE OR BASE PREPARATION	PLACEMENT AND COMPACTION	ON SITE CONSTRUCTION TESTING
S	TILL CORE	GLACIAL TILL	Well graded till moisture content at ±1% of optimum. (See Gradation Envelope below)	Strip all topsoil and organic material. Excavate cutoff trench as per detail. (see Detail 1) Strip all frost softened and weakened soils, proof roll then scarify base soils.	Placed, moisture conditioned and spread in maximum 300mm loose lifts. Vibratory compaction to 95% of standard proctor maximum dry density.	$\label{eq:source Classification} \\ D422-07: 1 \mbox{ per 10,000 m}^3 \mbox{ per source.} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
F	FILTER	SAND AND GRAVEL	Sand and gravel sized material. (See Gradation Envelope below)	Strip all frost softened and weakened soils. Smooth roll base soils.	Placed, and spread in maximum 600mm loose lifts. Vibratory compaction minimum of 4 passes utilizing a 10 ton smooth drum.	Source Classification D422-07: 1 per 5,000 m ³ per source. In-Place Testing D422-07: 1 per 5,000 m ³ offset to source. Visual in-place inspection of compaction and zone dimension.
т	TRANSITION	FINE ROCKFILL (NAG)	Cobble and gravel sized material. (See Gradation Envelope below)	Strip all frost softened and weakened soils. Smooth roll base soils.	Placed, and spread in maximum 600mm loose lifts. Compacted by uniform routing of haul trucks and spreading equipment	Confirmation of waste rock inertness, as required. D422-07: 1 per 5,000m ³ . Visual in-place inspection of material size, compaction, and zone dimension.
с	ROCKFILL	GENERAL ROCKFILL (NAG)	Nominal 1m maximum particle size.	Strip all frost softened and weakened soils. Smooth roll base soils.	Placed and spread in maximum 2000mm loose lifts. Maximum lift slope 1.3H:1V compacted by haul traffic and spreading equipment. Boulder-rich rockfill not to be placed adjacent to fine rock transition zone.	Confirmation of waste rock inertness, as required. Visual in-place inspection of material size and placement.
U	UPSTREAM FILL	SELECT FILL	Cell construction is to be utilized. Constant reworking of the tailings is needed to ensure proper distribution within the cell.		Placement and compaction requirements to be determined based on material selection.	

S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.03-Opt2.dwg = 2011AB.03 - Mar. 22, 2012 4:23pm - ben.brown

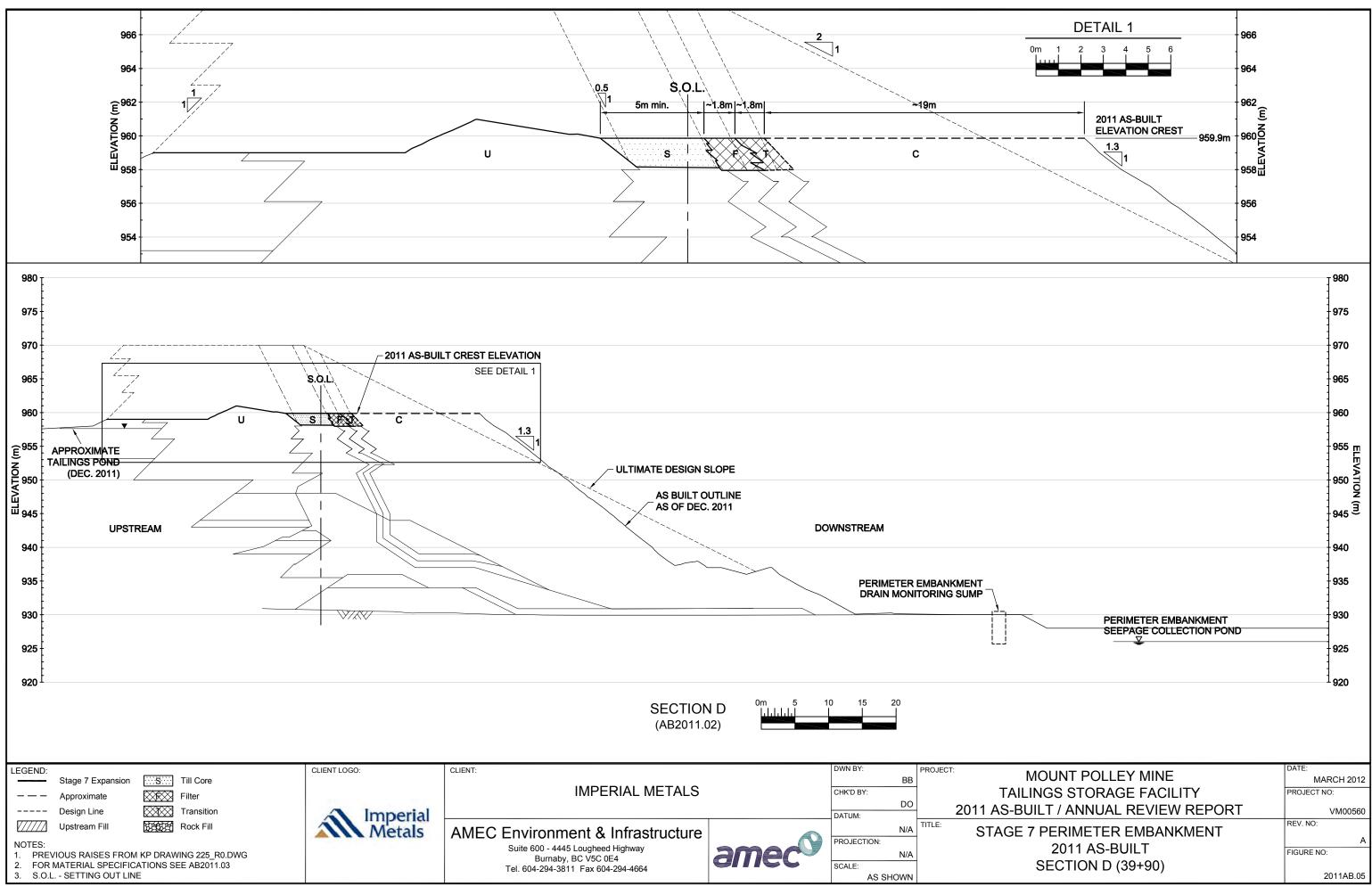
OFF SITE CONSTRUCTION TESTING

Source Classification D698-07, D4318-10, D2216-10:

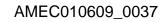
PROJECT:

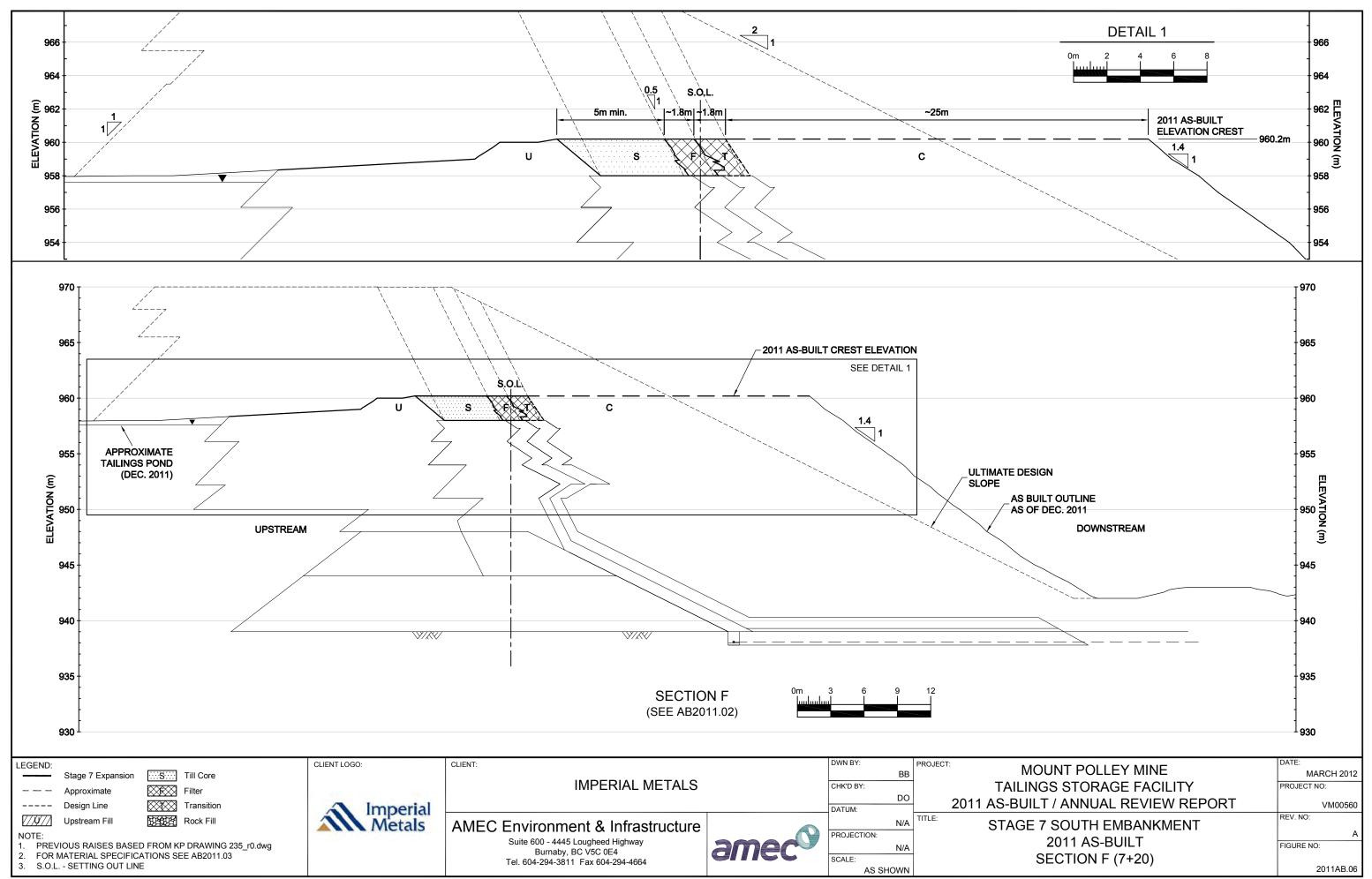

TITLE:

BB

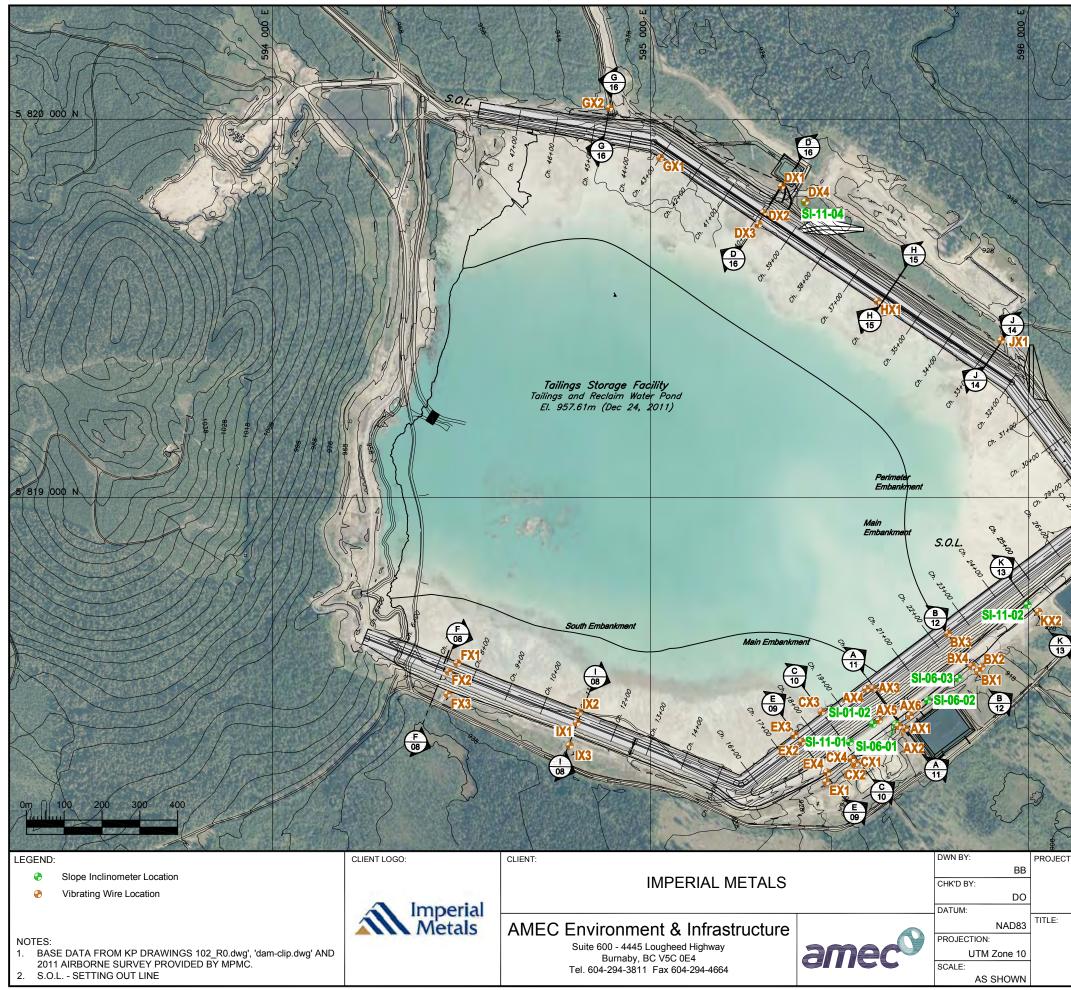

DO

N/A

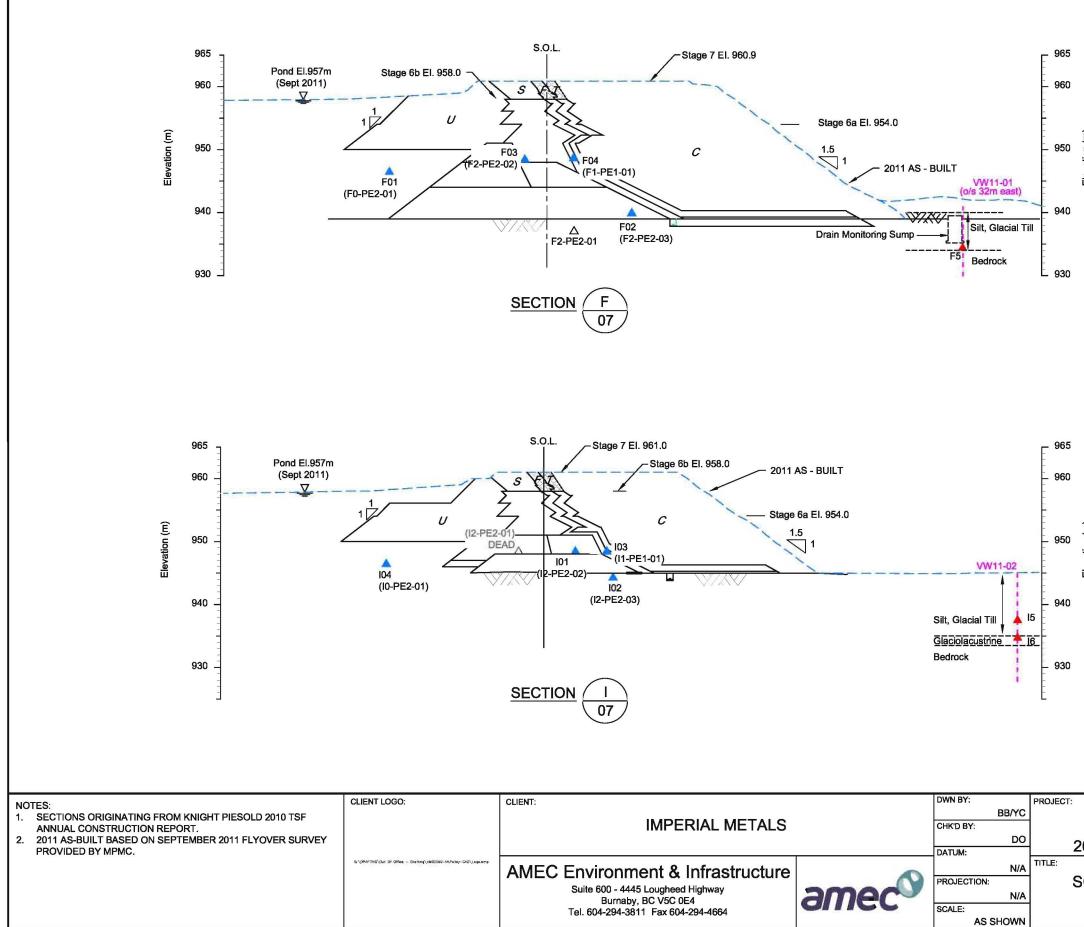

N/A



S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.04.dwg - 2011AB.04 - Mar. 22, 2012 4:23pm - ben.brown



S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.05.dwg - 2011AB.05 - Mar. 22, 2012 4:24pm - ben.brown



S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.06.dwg - 2011AB.06 - Mar. 22, 2012 4:24pm - ben.brown

S:\Internal\VM00560-MtPolley-CAD\2011As-built\2011AB.07.dwg - 2011AB.07 - Mar. 22, 2012 4:24pm - ben.brown

Ser ooo E	
MOUNT POLLEY MINE	DATE: MARCH 2012
TAILINGS STORAGE FACILITY 2011 AS-BUILT / ANNUAL REVIEW REPORT TAILINGS STORAGE FACILITY INSTRUMENTATION PLAN VIEW	PROJECT NO: VM00560 REV. NO: A FIGURE NO: 2011AB.07

S:\PROJECTS\VM00560 - Mt Polley Engineering Services\Drawings\as-built 2011\2011AB 08-16 DRAFT.dwg - 2011AB.08 - F&I - Mar. 23, 2012 2:37pm - daryl.dufault

Elevation (n

 0
 0
 6
 12
 18
 24

 1
 1
 1
 600
 1
 18
 24

 1
 : 600
 1
 1
 12
 18
 24

 1
 : 600
 1
 1
 18
 24

 1
 : 600
 1
 1
 100
 1

 TAILINGS STORAGE FACILITY
 PROJECT NO:
 2011 AS-BUILT / ANNUAL REVIEW REPORT
 VM00560

 SOUTH EMBANKMENT INSTRUMENTATION SECTIONS F 7+20 & I 11+00
 REV. NO:
 A

 FIGURE NO:
 2011AB.08

LEGEND

S GLACIAL TILL

F FILTER SAND

U SELECT FILL

FT SAND

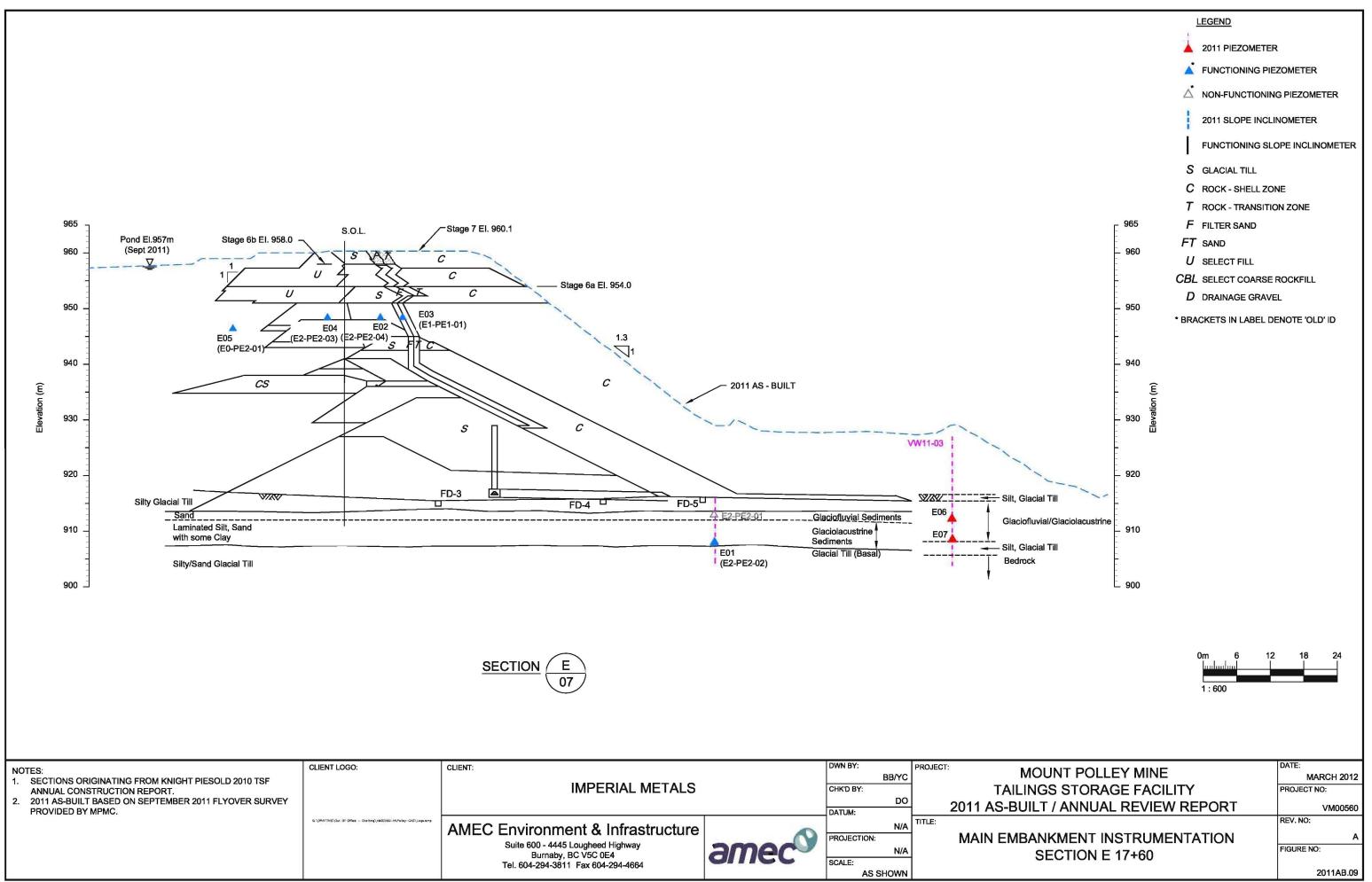
C ROCK - SHELL ZONE

T ROCK - TRANSITION ZONE

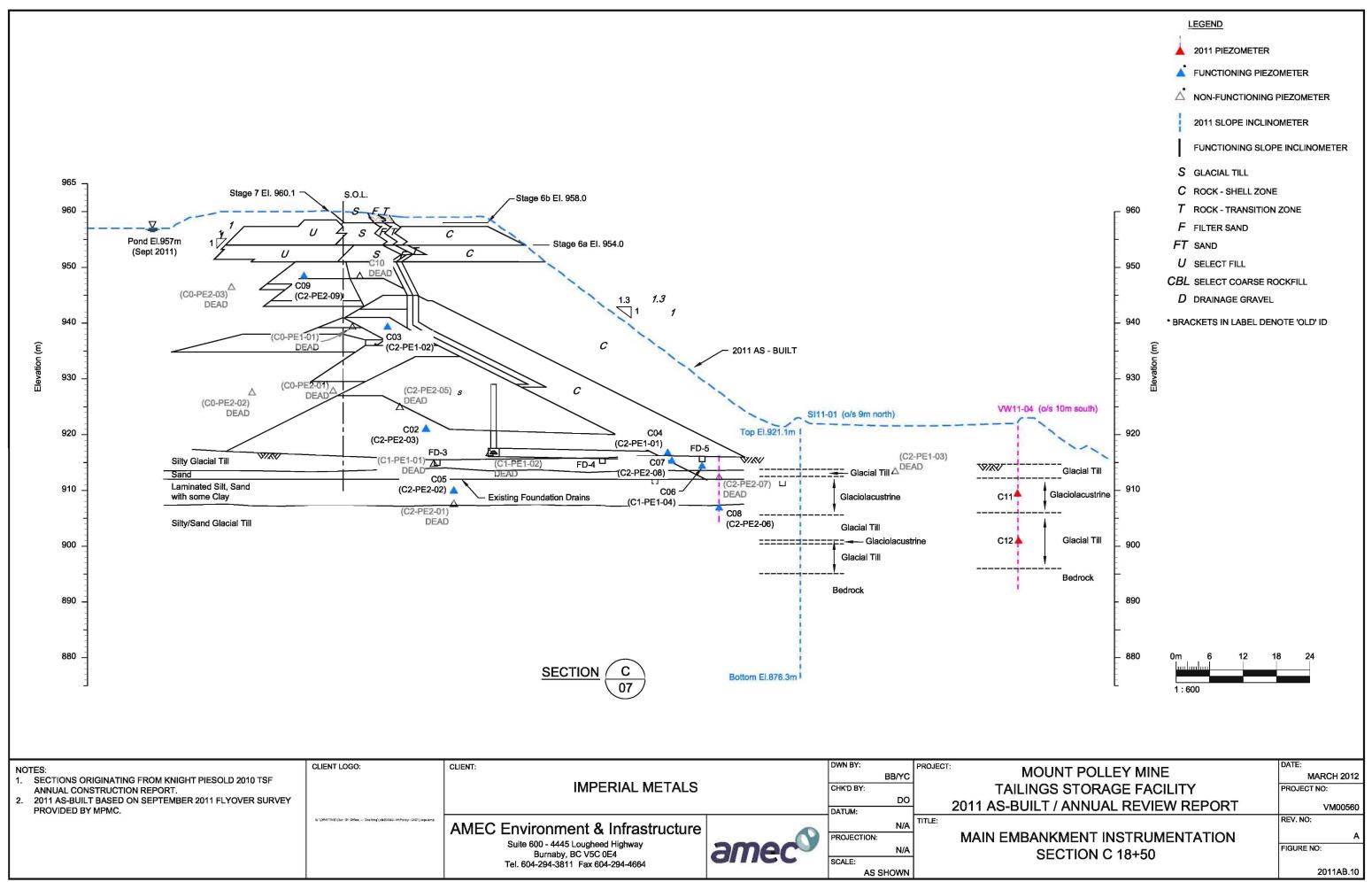
CBL SELECT COARSE ROCKFILL

* BRACKETS IN LABEL DENOTE 'OLD' ID

D DRAINAGE GRAVEL

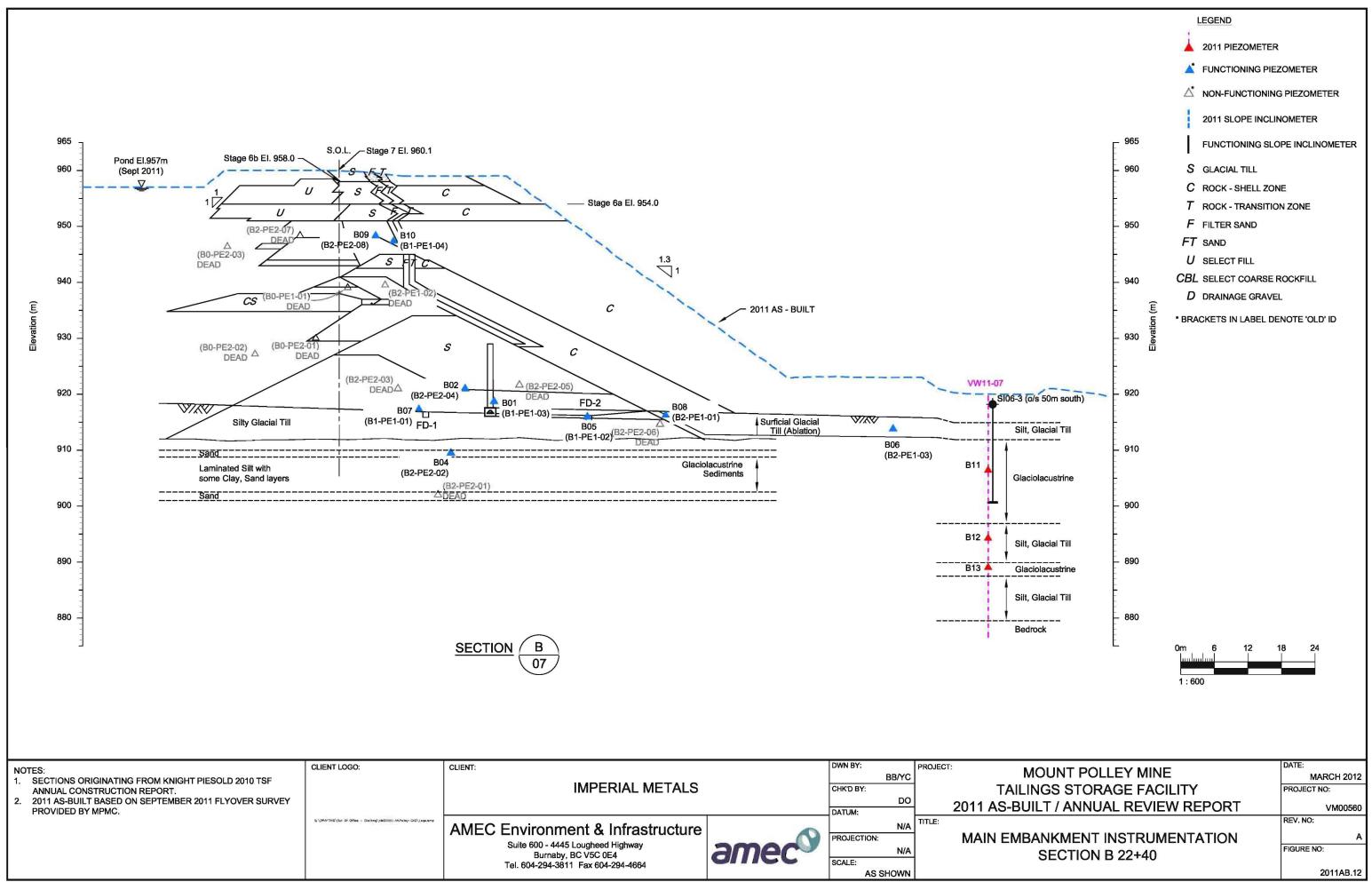

2011 PIEZOMETER

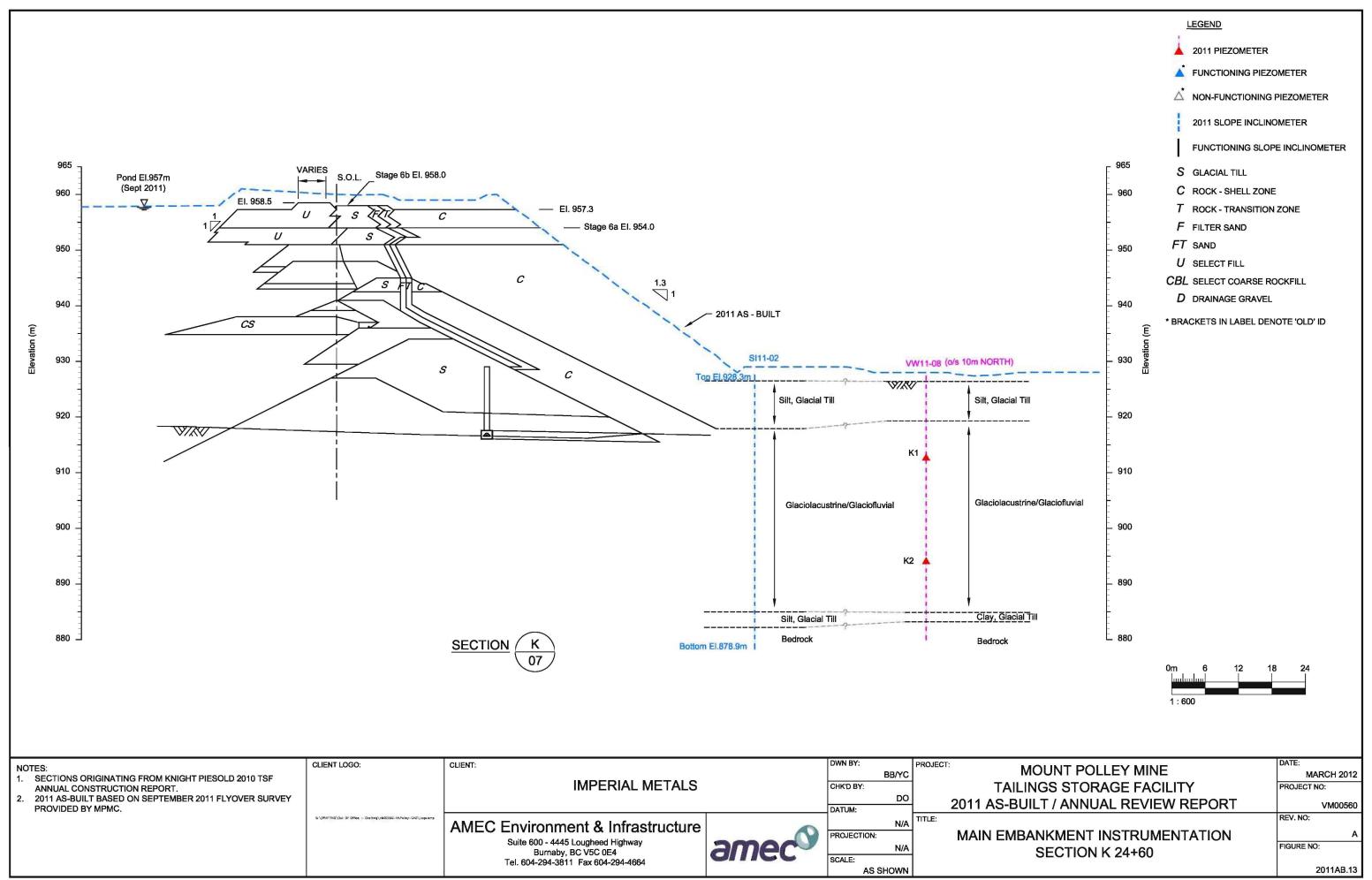
FUNCTIONING PIEZOMETER


△ NON-FUNCTIONING PIEZOMETER

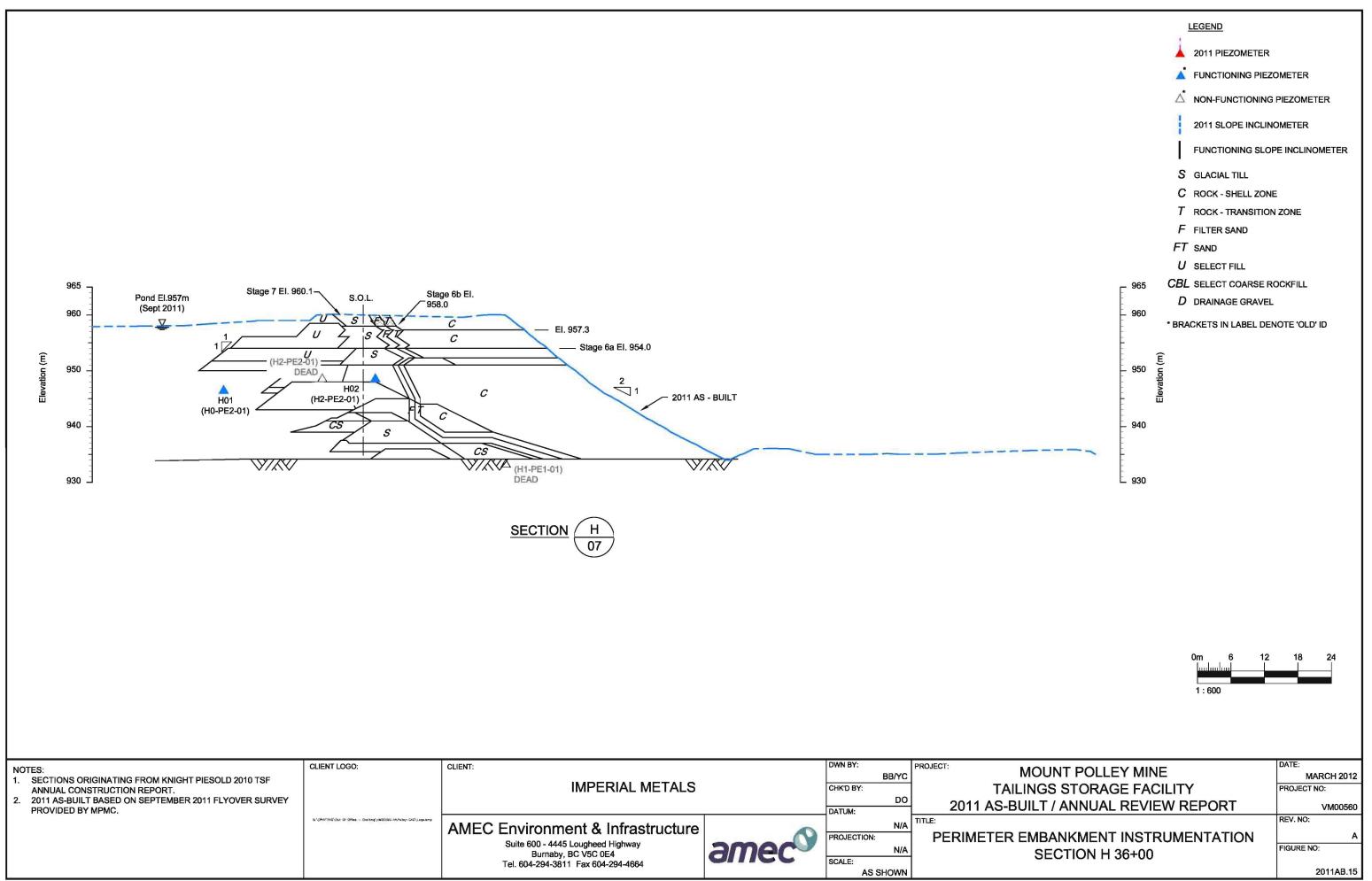
2011 SLOPE INCLINOMETER

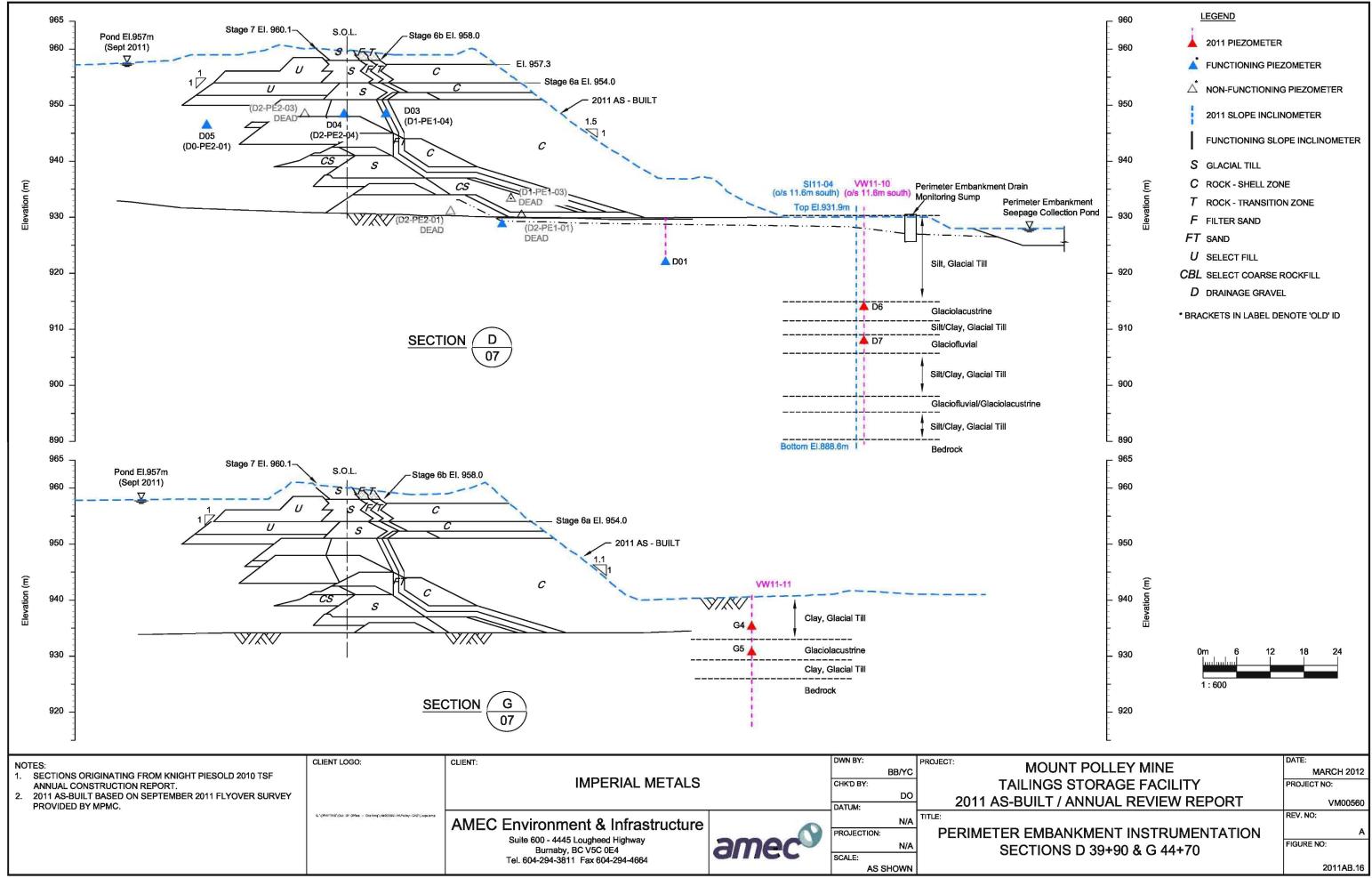

FUNCTIONING SLOPE INCLINOMETER


S:PROJECTS/VM00560 - Mt Polley Engineering Services/Drawings/as-built 2011/2011AB 08-16 DRAFT.dwg - 2011AB.09 - E - Mar. 23, 2012 2:39pm - daryl.dufault


S:\PROJECTS\VM00560 - Mt Polley Engineering Services\Drawings\as-built 2011/2011AB 08-16 DRAFT.dwg - 2011AB.10 - C - Mar. 23, 2012 2:40pm - daryl.dufault

S:\PROJECTS\VM00560 - Mt Polley Engineering Services\Drawings\as-built 2011\2011AB 08-16 DRAFT.dwg - 2011AB.11 - A - Mar. 23, 2012 2:40pm - daryl.dufault

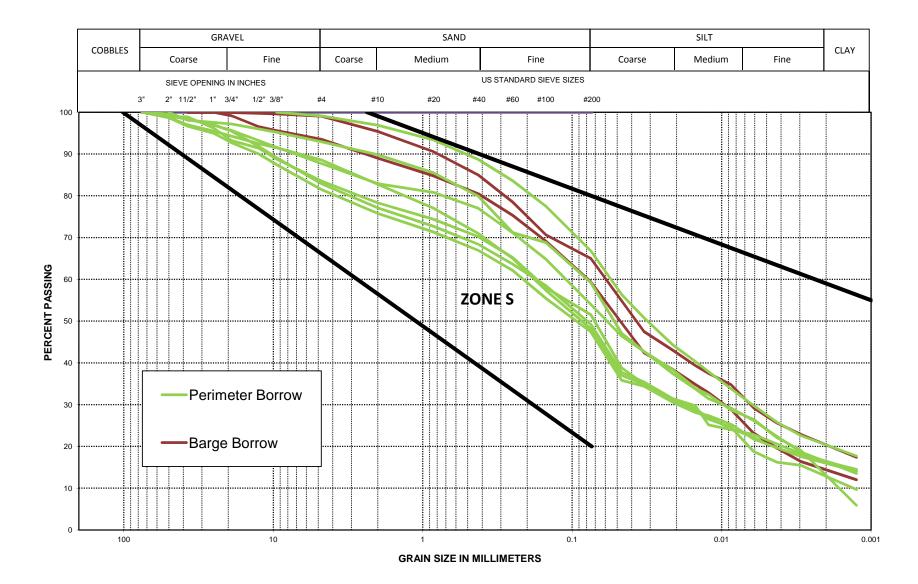

S:\PROJECTS\VM00560 - Mt Polley Engineering Services\Drawings\as-built 2011\2011AB 08-16 DRAFT.dwg - 2011AB.12 - B - Mar. 23, 2012 2:42pm - daryLdufault


S: PROJECTS \VM00560 - Mt Polley Engineering Services \Drawings\as-built 2011/2011AB 08-16 DRAFT.dwg - 2011AB.13 - K - Mar. 23, 2012 2:27 pm - daryl.dufault

S: PROJECTS/VM00560 - Mt Polley Engineering Services/Drawings/as-built 2011/2011AB 08-16 DRAFT.dwg - 2011AB.14 - J - Mar. 23, 2012 2:33pm - daryl.dufault

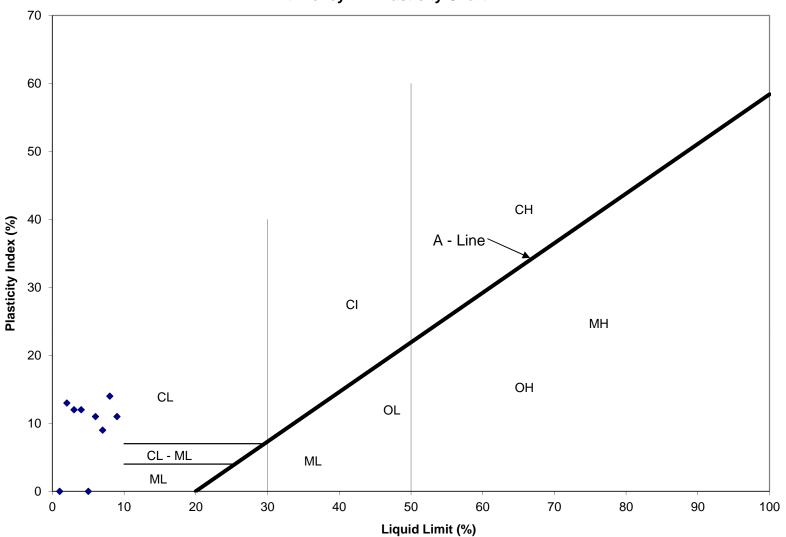
S: PROJECTS \VM00560 - Mt Polley Engineering Services \Drawings\as-built 2011/2011AB 08-16 DRAFT.dwg - 2011AB.15 - H - Mar. 23, 2012 2:34pm - daryl.dufault

S:\PROJECTS\VM00560 - Mt Polley Engineering Services\Drawings\as-built 2011\2011AB 08-16 DRAFT.dwg - 2011AB.16 - D&G - Mar. 23, 2012 2:29pm - daryl.dufault

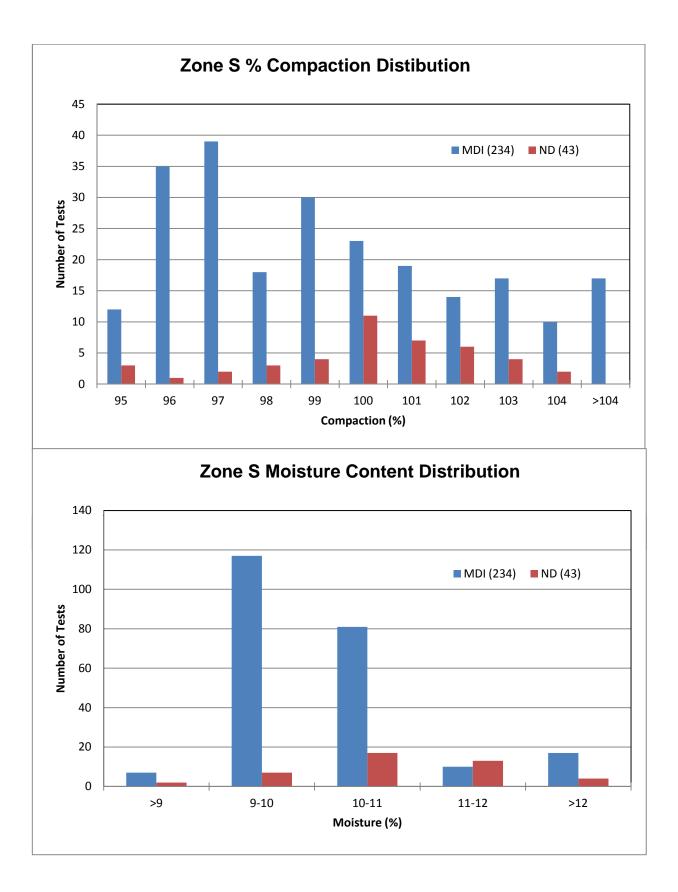


APPENDIX A

MATERIAL TESTING RESULTS


ZONE S - Till Core Testing Results

Mt. Polley Mine Tailings Storage Facility 2011 As-built/Annual Review Report


March 2012

Mout Polley Mine Tailings Storage Facility 2011 As-built/Annual Review Report

Mt. Polley Till Plasticity Chart

AMEC010609_0052

	A	В	С	D	E	F	G	Н	I	J	K	L	М
1	Test #	Date Tested	Stn	Offset S/F	Elevation	Northing	Easting	Max Density	Wet Density	Dry Density	Moisture	Density %	Pass
2	ND 1	21-Jun-11	15.10	3	958.20	-	-	2062	2255	2029	11.1	98%	YES
3	ND 2	21-Jun-11	15.10	2	958.20	-	-	2062	2298	2069	11.0	100%	YES
4	ND 3	21-Jun-11	14.27	4	958.20	-	-	2062	2276	2069	10.0	100%	YES
5	ND 4	21-Jun-11	13.25	1	958.20	-	-	2062	2333	2113	10.4	102%	YES
6	ND 5	21-Jun-11	11.75	3	958.20	-	-	2062	2331	2145	8.6	104%	YES
7	ND 6	21-Jun-11	10.25	4	958.20	-	-	2062	2323	2126	9.3	103%	YES
8	ND 7	21-Jun-11	8.75	1	958.20	-	-	2062	2281	2061	10.7	100%	YES
9	ND 8	21-Jun-11	7.25	4.5	958.20	-	-	2062	2358	2149	9.7	104%	YES
10	ND 9	21-Jun-11	5.75	3	958.20	-	-	2062	2284	2054	11.2	100%	YES
11	ND 10	21-Jun-11	5.25	1	958.20	-	-	2062	2205	1986	10.9	96%	YES
12	ND 11	22-Jun-11	15.00	1	958.36	5818262	595179	2062	2274	2053	10.8	100%	YES
13	ND 12	22-Jun-11	13.50	4	958.38	5818320	595045	2062	2214	1990	11.2	97%	YES
14	ND 13	22-Jun-11	12.00	3	958.45	5818375	594902	2062	2258	2053	10	100%	YES
15	ND 14	22-Jun-11	10.50	1.5	958.40	5818426	594768	2062	2320	2100	10.5	102%	YES
16	ND 15	22-Jun-11	9.00	4	958.41	5818485	594624	2062	2190	1968	11.3	95%	YES
17	ND 16	23-Jun-11	9.00	1	958.41	5818485	594624	2062	2276	2051	11	99%	YES
18	ND 17	23-Jun-11	7.50	2.5	958.34	5818536	594489	2062	2292	2051	11.7	99%	YES
19	ND 18	23-Jun-11	6.50	4	958.36	5818575	594394	2062	2305	2062	11.7	100%	YES
20	ND 19	26-Jun-11	15.20	1	958.58	5818258	595195	2062	2294	2066	11	100%	YES
21	ND 20	26-Jun-11	13.70	3	958.62	5818314	595058	2062	2319	2113	9.7	102%	YES
22	ND 21	26-Jun-11	12.30	4.5	958.55	5818365	594932	2062	2179	1958	11.6	95%	YES
23	ND 22	27-Jun-11	10.80	2.5	958.43	5818420	594787	2062	2322	2120	9.5	103%	YES
24	ND 23	27-Jun-11	9.30	0.5	958.43	5818473	594644	2062	2294	2091	9.7	101%	YES
25	ND 24	27-Jun-11	7.80	4.5	958.42	5818529	594513	2062	2294	2080	10.3	101%	YES
26	ND 25	27-Jun-11	6.35	3	958.54	5818581	594373	2062	2314	2094	10.5	102%	YES
27	ND 26	27-Jun-11	5.50	1	958.48	5818609	594298	2062	2287	2083	9.8	101%	YES
28	ND 27	27-Jun-11	26.90	5	958.14	5818915	596140	2062	2307	2072	11.3	100%	YES
29	ND 28	27-Jun-11	25.50	3.5	958.20	5818830	596030	2062	2302	2110	9.1	102%	YES
30	ND 29	27-Jun-11	24.00	3	958.23	5818739	595909	2062	2252	2037	10.6	99%	YES
31	ND 30	27-Jun-11	22.50	1	958.32	5818649	595791	2062	2308	2081	10.9	101%	YES
32	ND 31	27-Jun-11	21.45	4.5	958.21	5818585	595702	2062	2244	2012	11.5	98%	YES
33	ND 32	25-Jul-11	36.00	3.5	958.68	5819542	595604	2062	2318	2107	10	102%	YES
34	ND 33	25-Jul-11	12.05	2.5	958.69	5818373	594908	2062	2289	2103	8.8	102%	YES
35	ND 34	19-Aug-11	19.60	4	959.40	5818479	595562	2062	2297	2087	10	101%	YES
36	ND 35	19-Aug-11	18.30	1	959.32	5818399	595460	2062	2302	2093	10	101%	YES
37	ND 36	19-Aug-11	17.00	3	959.41	5818322	595353	2062	2297	2085	10.1	101%	YES
38	ND 37	19-Aug-11	15.70	0.5	959.34	5818245	595245	2062	2267	2045	10.8	99%	YES
39	ND 38	21-Aug-11	20.00	2.5	595.80	5818562	595992	2062	2217	1964	12.8	95%	YES
40	ND 39	23-Aug-11	30.00	0.5	959.20	5819105	596106	2062	2297	2059	11.5	100%	YES
41	ND 40	23-Aug-11	4.90	2	960.00	-	-	2062	2276	1993	10.4	97%	YES
42	ND 41	24-Aug-11	48.20	-10	960.00	5820031	594562	2062	2265	2019	12.1	98%	YES
43	ND 42	24-Aug-11	48.20	-15	960.00	5820038	544569	2062	2349	2049	14.6	99%	YES
44	ND 43	24-Aug-11	48.20	3	960.00	-	-	2062	2313	2047	12.9	99%	YES

Mt. Polley on-site till moisture tests

Sample #	Date	Pan Tare (g)	Total Weight of Sample Wet (g)	Weight of >19mm (g)	Wet Sample + Tare (Min 700g)	Dry Sample + Tare (g)	Total Weight of Sample Dry (g)	Oversize (%)	Moisture (%)
1	25-Jul-11	174.14	2209.50	119.20	862.95	802.65	2016.08	5.9%	9.6%
2	27-Jul-11	183.35	1586.72	29.45	831.73	767.58	1429.73	2.1%	11.0%
3	27-Jul-11	178.04	3339.6	102.27	910.9	840.76	3019.98	3.4%	10.6%
4	30-Jul-11	164.31	2481.12	127.59	705.37	637.1	2168.06	5.9%	14.4%
5	30-Jul-11	171.73	1896.19	167.23	860.09	787.5	1696.23	9.9%	11.8%
6	02-Aug-11	178.08	2393.06	138.62	865	780.11	2097.32	6.6%	14.1%
7	12-Aug-11	178.06	2189.74	82.6	759.42	702.7	1976.10	4.2%	10.8%
8	13-Aug-11	182.59	1518.14	77.37	782.34	726.2	1376.03	5.6%	10.3%
9	14-Aug-11	174.31	2622.02	185.94	786.65	723.88	2353.24	7.9%	11.4%

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 4 DATE RECEIVED 2011. Jun. 02 DATE TESTED 2011. Jun. 02 DATE SAMPLED 2011. May. 31

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE			e S			SAMPLEI TESTED TEST ME	BY	D Ostri AMEC la WASHED	
PERCENT PASSING	100 90 90 90 80 90 70 90 60 90 50 90 40 90 20 90 10 90								0 10 20 30 40 50 60 70 80 90 100
GRAVEL	SIZES	PERCENT PASSING	GRADATION LIMITS		SAND SI	ZES AND FIN	ES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 98.8 97.0 95.5 94.3 92.5 91.5	97.0-100 82.0-100		No. 4 No. 10 No. 20 No. 40 No. 60 No. 10 No. 20	850 425 250 0 150		88.5 82.8 74.4 65.1 58.6 53.2 45.2	67.0-100.0 39.0-90.0 20.0-80.0
COMMENTS Page 1 of	1	2011.Jun	1.12 AMECE	arth & E	nvironmental	F	ÆR	.Im	ichaud
Reporting of these	test results con:			ering in	terpretation o	r evaluation of	test res	ults is provided	only on written request.

	GRAIN SIZ	E DISTRIBU	TION	am	ec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC V0L 2N0	orporation	OFFICE: Prince PROJECT: VM00 DATE: 09-Ju			
	PROJECT NAME:	Mount Polley	,			
	TEST No:		SAMPLED BY:	D. Ostritche	enko	
	DATE SAMPLED:	31-May-11	SOURCE:	S-01-11		
	DATE TESTED:	7-Jun-11	DEPTH:			
100.0 _T				── ──────	SUMN Grain size	IARY Passing
90.0					(mm) 75.0	(%) 100.0
					50.0 37.5	98.8
80.0					25.0	95.5
70.0 -					19.0 12.5	94.3 92.5
≌ 60.0 ∔					9.5 4.75	91.5 88.5
90.00 50.0 50.0					2.00	82.8 77.0
					0.425 0.250	71.0 64.9
40.0 - June 40.0 -					0.150	57.3 48.2
					0.0467	37.0
30.0 +					0.0212	<u>34.8</u> 31.2
20.0			ż ···		0.0150 0.0122	29.0 26.8
10.0 +					0.0086	24.3 22.1
10.0					0.0043	<u> </u>
0.0 +					0.0013	14.5
0.0	01 0.010	0.100 GRAIN SIZE IN M	1.000 10.000 NILLIMETERS	100.000		
REMARK	S:		D	10 = N/A	GRAVEL	11.479
			D	30 = N/A	SAND	40.36%
			D	60 = N/A	SILT	32.22%
			c	u = N/A	CLAY	15.94%
			c	c = N/A		

Reporting of these test results constitutes a testing service only.

Engineering Interpretation or evaluation of the test results is provided only on written request.

A division of AMEC Americas Limited 3456 Opte Crescent, Prince George, BC, V2N 2P9

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 5 DATE RECEIVED 2011. JUN. 02 DATE TESTED 2011. JUN. 02 DATE SAMPLED 2011. May. 31

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE			e S		SAMPLED BY TESTED BY TEST METHOD	D Ostri AMEC la WASHED	
PERCENT PASSING	100 100 90 100 80 100 70 100 60 100 10 100				H00 M50		0 10 20 90 40 50 70 80 90 100
GRAVEL	L SIZES	PERCENT PASSING	GRADATION LIMITS	SAND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
PASSING 3" 75 mm 100.0 2" 50 mm 98.7 1 1/2" 37.5 mm 96.7 1" 25 mm 95.0 3/4" 19 mm 92.7 1/2" 12.5 mm 90.0 3/8" 9.5 mm 87.4			97.0-100.0 82.0-100.0	No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm 75 μm	81.5 75.8 71.1 66.3 61.2 54.7 44.2	67.0-100.0 39.0-90.0 20.0-80.0
COMMENTS		1	11	L		1	L
Page 1 of Reporting of these		2011.Jur	n . 12 AMEC Earth & service only. Engineering	Environmental	PER		only on written request.

	GRAIN SIZ	E DISTRIE	BUTION	а	mec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC V0L 2N0	orporation		Prince George, B VM00560.200.4 09-Jun-11	с	
	PROJECT NAME:	Mount Polley				
	TEST No: DATE SAMPLED; DATE TESTED:	31-May-11 7-Jun-11	SAMPLED E SOURCE: DEPTH:	SY: D. C S-03	Ostritchenko 2-11	
100.0 - 90.0 - 80.0 - 70.0 - 70.0 - 70.0 - 50.0 - 40.0 - 30.0 - 20.0 - 10.0 - 0.0 - 0.0 - 0.0 -					SUMI Grain size (mm) 75.0 50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00 0.850 0.425 0.250 0.425 0.250 0.150 0.075 0.0474 0.0335 0.0212 0.0150 0.0150 0.0122 0.0086 0.0043 0.0030	Passing (%) 100.0 98.7 96.7 95.0 92.7 90.0 87.4 81.5 75.8 71.3 66.9 62.1 55.4 47.4 35.8 34.4 30.5 28.1 27.4 25.3 21.8 19.7 17.6 14.0
REMARK	ζ 8:				N/A GRAVEL	
	Honista			D60 = Cu =	N/A SAND N/A SILT N/A CLAY N/A	34.06% 31.84% 15.58%

TECHNICIAN: (211) Chould

Reporting of these test results constitutes a testing service only.

Engineering interpretation or evaluation of the test results is provided only on written request.

ATTERBERG LIMITS ASTM D4318

PROJECT: Project Number: Technician: Date:	Mount Polley VM00560.20 G. Michaud 7-Jun-11		Sample II Date Sam Depth: Comment	pled:	S-02-11 31-May-11	
Liquid Limit						
Trial No.	1	2	3			
No. of Blows	34	22	14			
Tare ID	BC	J	AO			
Mass Wet + Tare	28.75	35.71	33.34			
Mass Dry + Tare	26.19	32.76	30.74		-	
Mass Tare	15.92	21.59	21.52			
Mass of Water	2.56	2.95	2.60			
Dry Soil Mass	10.27	11.17	9.22			
Moisture Content	24.9	26.4	28.2			
Liquid Limit	26.0	26.0	26.2		Average Liquid Limit:	26
Plastic Limit						
Trial No.	1	2	3			
Tare ID	26	21	24			
Mass Wet + Tare	28.45	30.09	33.37		—	
Mass Dry + Tare	27.69	29.03	31.96			
Mass Tare	22.00	21.22	21.52			
Mass of Water	0.76	1.06	1.41		-	
Dry Soil Mass	5.69	7.81	10.44		· ·	
Moisture Content	13.4	13.6	13.5		Average Plastic Limit	13
					Plasticity Index	13
					Received Moisture	10.8
Plasticity Index	PI = LL - PL		1			
Liquidity Index	LI = (MC - P					
	•	,	4			
					<u>ت</u>	
					Plasticity Chart	
					r lastiský shatt	
29			TTITTA	⁷⁰ T		
		╈		60 -	WL≍50 ↑ A-L	ine 🖌
\$2 28 11 28 11 27 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 13 1 14 1 15 26 14 26				ğ 50 -	WL=30 CH	
	_ 	╉┫┥┇╏╏╎╎		X1000 40 30 30 20 20		
				5 30	CI	
	╶┠╌┠╌┠╌┼╶┟┼┠┠╏					
E 26 ■ 25				10	♦ MH	
25	╶╂┊╋┽┽┽┿╋			。	M	
24 10 10				⁰ ML	20 40 60 80	100
	# of blows			,	Liquid Limit	
L						

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

MOISTURE - DENSITY RELATIONSHIP REPORT

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

PROCTOR NO. 1 DATE TESTED 2011. JUN. 06 DATE RECEIVED 2011. JUN. 02 DATE SAMPLED 2011. May. 31

INSITU MOISTURE N/A % SAMPLED BY D Ostritchenko TESTED BY J. McDonald SUPPLIER Mount Polley SOURCE S-02-11 MATERIAL IDENTIFICATION MAJOR COMPONENT TILL SIZE 50mm DESCRIPTION ROCK TYPE	COMPACTION STAN COMPACTION PROC RAMMER TYPE PREPARATION OVERSIZE CORREC RETAINED 19mm SC OVERSIZE SPECIFIC TOTAL NUMBER OF	CEDURE TION METH REEN C GRAVITY	Standard Proctor, ASTM D698 C: 152.4mm Mold, Passing 19mm Automatic Dry OD ASTM 4718 7.0 % 2.70 5		
2050		TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)
		1	2034	1868	8.9
(€ 2000 1975 1975 1950 1950 1925 1925 1900		2	2174	1969	10.4
		3	2232	1982	12.6
<u>v</u> 1925 <u>⊨ / </u>		4 <u>.</u>	2179	1901	14.6
		5	2113	1815	16.4
	<u>-</u> 5	ZERO AIR V FOR ESTIM/ SPECIFIC G OF 2.70		MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)
9 10 11 12 13 14 15 16 MOISTURE CONTENT (9		CALCULATE OVERSIZE (D CORRECTED	1992 2029	11.5 11.0
COMMENTS					
Page 1 of 1 2011. Jun. 10 AME	C Earth & Environmental		PER	مراجع المحالية	

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

PROJECT NO.	VM0560)		
	Mount	Polley	Mining	Corp
C.C.				

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

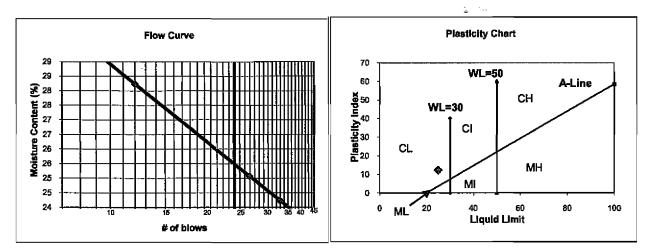
CONTRACTOR

SIEVE TEST NO. 6 DATE RECEIVED 2011. Jun. 02 DATE TESTED 2011. Jun. 02 DATE SAMPLED 2011. May. 31

	100 ^{8*}	2 11	6" 1" 8 	144" 1	L" 3/8"	t and a factor of the second s	#10	NZO	(440	M E0		200 g 0
	90 [nin for a fair and a second	······································	<u> </u>	┢╌┥		and the second sec	Managerry a specific and		1843 - 764 miles	******	~ 10
9 X	ᅇᅣ			· •••••	· · · · · · · ·						The Second Section of the Second Section of the Second Sec	- 20
PERCENT PASSING	70 – E					The second second				~~~		30 FRC ENT RETAINED
74 1	60 - E 50 - E						a na					
	40 -			 			_		W. M. Shike			
ĔŔ	30 -									**************************************		- 70 X
	20 –				$\left \right $							- 80 8
	10 틑		 									- 90
	아투		3 8	L	<u> </u> 3 @		N			8	:	ੀ 100 ਤੋ
	Ĩ	50 mm			9,5 mm 12 5 mm	4.75 m	2 mm	0.86 mn	426 µm	260 µm	מען 050	
GRAVE	L SIZES		PERC			GRADATION LIMITS	s	AND SIZE	S AND FI	IES	PERCEN	
3" 2"	75 50	mm	100 99		9	7.0-100.0	NO NO		$4.75 \\ 2.00$		82.9	
1 1/2"	37.	mm 5 mm	98				NO		2.00		72.8	
1"	25	mm	97				No		425	•	68.3	
	19	mm	95		8	2.0-100.0	No		250	μm	63.3	
3/4"		-	1 91	.8			No		150		56.8	
	12. 9.		89				No	. 200	75	μm		5 20.0-80.0

rting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request. Report System Software Registered to: AMEC Earth & Environmental, Prince George

	GRAIN SIZ	E DISTRIB	UTION		ame	ec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC V0L 2N0	orporation	OFFICE: PROJECT: DATE:	Prince Georg VM00560.200 09-Jun-11			
	PROJECT NAME:	Mount Polley		t.			
	TEST No:		SAMPLED E	W:	D. Ostritche	enko	
	DATE SAMPLED: DATE TESTED:	31-May-11 9-Jun-11	SOURCE: DEPTH:		S-03-11		
100.0 - 90.0 - 80.0 -						SUMN Grain size (mm) 75.0 50.0 37.5 25.0	IARY Passing (%) 100.0 99.6 98.4 97.0
70.0 - 60.0 - 50.0 -						19.0 12.5 9.5 4.75 2.00 0.850 0.425 0.250	95.4 91.8 89.1 82.9 77.1 72.7 68.4 63.6
40.0 - 40.0 - 40.0 - 20.0 - 20.0 - 10.0 -				· · · ·		0.150 0.075 0.0475 0.0336 0.0212 0.0143 0.0123 0.0087 0.0061	58.5 49.2 37.7 35.4 31.4 29.7 25.1 24.0 22.9
0.0 - 0.0	01 0.010	0.100 GRAIN SIZE II	1.000 10. MILLIMETERS	.000	100.000	0.0043 0.0030 0.0013	20.6 18.3 14.3
REMARK	ζS:			$D_{10} =$ $D_{30} =$ $D_{60} =$ $C_{U} =$	N/A N/A N/A N/A	GRAVEL SAND SILT CLAY	17.109 33.689 33.179 16.049
	IAN: UMCC			Cc=	N/A		


Reporting of these test results constitutes a testing service only.

Engineering Interpretation or evaluation of the tast results is provided only on written request.

ATTERBERG LIMITS ASTM D4318

PROJECT: Project Number: Technician: Date:	VM00560.200.4 G. Michaud		Sample ID: Date Sampled: Depth: Comments:	S-03-11 31-May-11	
Liquid Limit					
Trial No.	1	2	3	· · · · · · · · · · · · · · · · · · ·	
No. of Blows	35	28	12		
Tare ID	BA	J	BC		
Mass Wet + Tare	27.71	35.28	28.01		
Mass Dry + Tare	25.36	32.55	25.35		
Mass Tare	15.66	21.66	15.93		
Mass of Water	2.35	2.73	2.66		
Dry Soil Mass	9.70	10.89	9.42		
Moisture Content	24.2	25.1	28.2		
Liquid Limit	25.3	25.5	25.8	Average Liquid Limit:	25
Plastic Limit					
Trial No.	1	2	3		
Tare ID	26	31	15		
Mass Wet + Tare	31.27	30.82	30.18		
Mass Dry + Tare	30.22	29.77	29.25		
Mass Tare	21.99	21.52	22.03		
Mass of Water	1.05	1.05	0.93		
Dry Soil Mass	8.23	8.25	7.22		
Moisture Content	12.8	12.7	12.9	Average Plastic Limit	13
				Plasticity Index	12
			_	Received Moisture	11.7
Plasticity Index	PI = LL - PL		7		
Liquidity Index	LI = (MC - F	PL) / PI			
			-		
				· .	

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

MOISTURE - DENSITY RELATIONSHIP REPORT

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

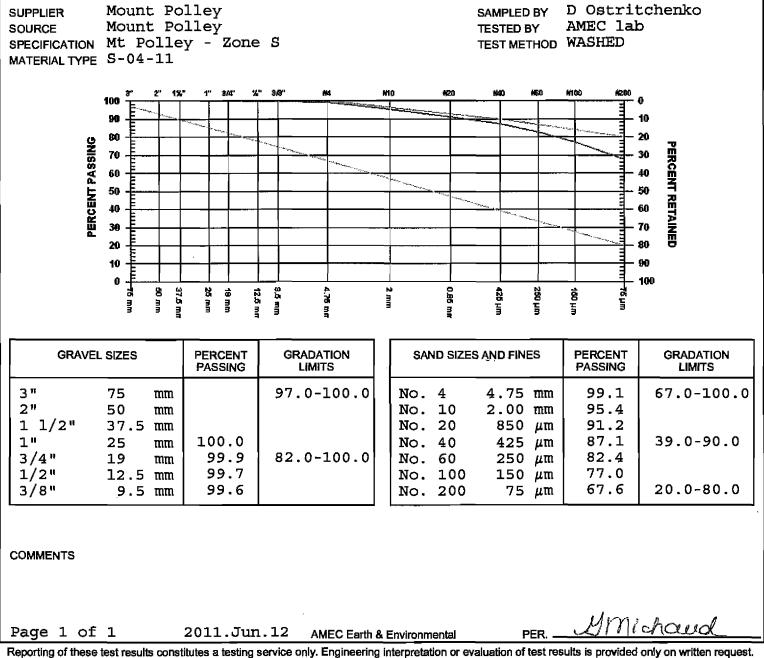
CONTRACTOR

PROCTOR NO. 2 DATE TESTED 2011.JUN.06 DATE RECEIVED 2011.JUN.02 DATE SAMPLED 2011.May.31

SAMPLED BYD OstritchenkoTESTED BYJ. McDonaldSUPPLIERMount PolleySOURCES-03-11MATERIAL IDENTIFICATIONMAJOR COMPONENTTILLSIZE50mmDESCRIPTION	COMPACTION PRO RAMMER TYPE PREPARATION OVERSIZE CORREC RETAINED 19mm S OVERSIZE SPECIF	D			•		
2100		TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)		
중 2050 Ё		1	1982	1873	5.8		
(m) 2050 (m) 2025 (m) 2020 (m) 2000 (m) 2000 (m) 4 (m) 1975 (m) 4 (m) 1975 (m) 4 (m) 4 (m) 4 (m) 4 (m) 4		2	2110	1954	8.0		
2000 - 20000 - 20000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2		3	2227	2032	9.6		
9 1975 - 4		4	2225	1980	12.4		
		5	2179	1920	13.5		
[▶] 1925							
		ZERO AIR V FOR ESTIM SPECIFIC G OF 2.70		MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)		
7.5 10.0 12.5 1 MOISTURE CONTENT (%)	5.0		ED CORRECTED	2030 2056	10.5 10.0		
COMMENTS							
Page 1 of 1 2011, Jun. 10 AMEC Earth & Environmental PER. Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.							

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request. Report System Softwere Registered to: AMEC Earth & Environmental, Prince George

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9


PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

то	Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0
	VOL 2NO

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 7 DATE RECEIVED 2011. JUN. 02 DATE TESTED 2011. JUN. 02 DATE SAMPLED 2011. May. 31

orting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request. Report System Software Registered to: AMEC Earth & Environmental, Prince George

	GRAIN SIZ	ZE DISTRIBU	TION	am	ec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC VOL 2N0	orporation	PROJECT: VMC	ce George, BC 10560.200.4 lun-11		
	PROJECT NAME:	Mount Polley		ę		
	TEST No:		SAMPLED BY:	D. Ostritche	enko	
	DATE SAMPLED:	31-May-11	SOURCE:	S-04-11		
	DATE TESTED:	7-jun-11	DEPTH:			
					SUM	IARY
100.0				╕ ┲┼ ╕ ╄╷╿╢ <mark>╏</mark>	Grain size (mm)	Passing (%)
90.0	 			┽╌┾╌╷┼┼┼┼╢	75.0	100.0
80.0 +					37.5	100.0 100.0
00.0					25.0 19.0	100.0 99.9
70.0					12.5 9.5	99.7 99.6
9 60.0 +					4.75	99.1
50.0 - 50					2.00 0.850	95.4 90.6
⊢ ^{••••}					0.425	85.0 78.5
2 2 2 2 2 40.0 40.0					0.150	70.6
He He					0.075 #N/A	65.0 -6.4
30.0		- + + +			0.0330	47.5 43.0
20.0 -					0.0141 0.0121	39.3 37.5
					0.0085	34.8
10.0 +		┠━━┿━┥┅╎╎╏╎╎╎╴╴┠┉╼╎╶╎		+ + + + + + + + + + + + + + + + + + + +	0.0060	29.3 25.6
0.0					0.0030	22.9 17.4
0.0	01 0.010	0.100 GRAIN SIZE IN M	1.000 10.000 AILLIMETERS	100.000		
REMARK	<u>.</u>			$D_{10} = N/A$	GRAVEL	0.94%
				D30 = N/A	SAND	34.07%
				D60 = N/A	SILT	45.20%
				$C_U = N/A$	CLAY	19.79%
				Ce= N/A		

Reporting of these test results constitutés a testing service only.

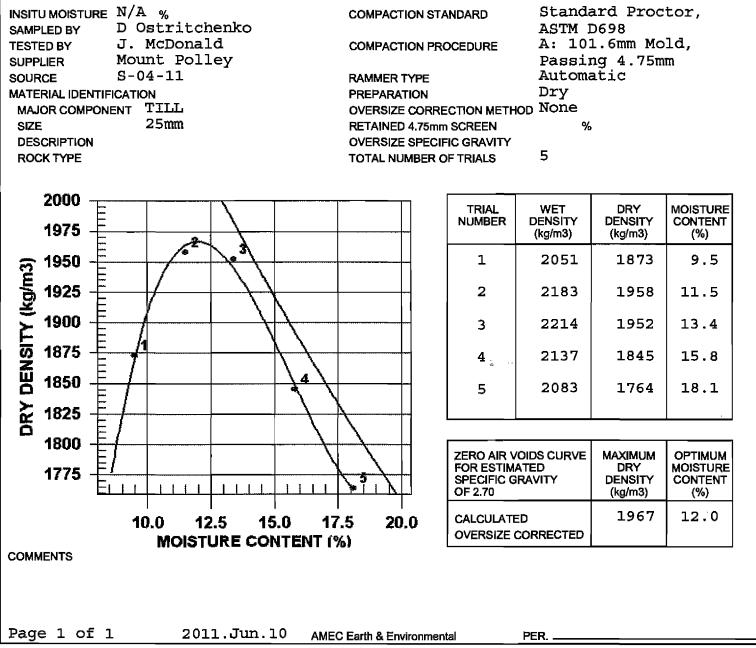
Engineering interpretation or evaluation of the test results is provided only on written request.

ATTERBERG LIMITS ASTM D4318

PROJECT: Project Number: Technician: Date:	Mount Polley VM00560.20 G. Michaud 7-Jun-11		Sample ID Date Samp Depth: Comments	pled:	S-04-11 31-May-11
Liquid Limit					
Trial No.	1	2	3	Γ	7 .
No. of Blows	29	41	16		1
Tare ID	AI	BA	BB		1
Mass Wet + Tare	34.64	30.07	28.46		1
Mass Dry + Tare	31.98	27.27	25.76		
Mass Tare	21.36	15.66	15.83		
Mass of Water	2.66	2.80	2.70		-
Dry Soil Mass	10.62	11.6 1	9.93		1
Moisture Content	25.0	24.1	27.2		
Liquid Limit	25.5	25.8	25.7		Average Liquid Limit: 26
Plastic Limit					
Trial No.	1	2	3		
Tare ID	31	15	28		
Mass Wet + Tare	31.43	30.00	30.82		
Mass Dry + Tare	30.24	29.04	29.68		
Mass Tare	21.53	22.04	21.29		
Mass of Water	1.19	0.96	1.14		
Dry Soil Mass	8.71	7.00	8.39		
Moisture Content	13.7	13.7	13.6		Average Plastic Limit 14
					Plasticity Index 12
			_		Received Moisture 10.3
Plasticity Index	PI = LL - PL				
Liquidity Index	LI = (MC - P	'L) <u>/Pl</u>			
· ·			-		
			I		<u>کر اور اور اور اور اور اور اور اور اور او</u>
	Flow Curve				Plasticity Chart
28 28 28 28 27 27 27 27 26 26 26 26 26 26 26 26 26 26	15 20 # of blows			70 60 50 40 20 10 0 ML	WL=30 CI CI CI MH MI 20 40 60 80 100 Liquid Limit

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

MOISTURE - DENSITY RELATIONSHIP REPORT


PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

PROCTOR NO. 3 DATE TESTED 2011. JUN. 06 DATE RECEIVED 2011. JUN. 02 DATE SAMPLED 2011. May. 31

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request. Report System Software Registered to: AMEC Earth & Environmental, Prince George

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

то Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

DATE RECEIVED 2011.Jun.02 DATE TESTED 2011.Jun.02 DATE SAMPLED 2011.May.31 SIEVE TEST NO. 8

SPECIFICATION Mt Polley - Zone S TEST METHOD WASHED MATERIAL TYPE S-05-11, Barge #2
3" 2" 11%" 1" 3/4" %" 3/9" #4 #10 #20 #40 #60 #100 #200
- 66 аллалалан алаан ал
GRAVEL SIZES PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS Imits PASSING LIMITS Imits
3" 75 mm 97.0-100.0 No. 4 4.75 mm 93.5 67.0-100.0
2" 50 mm No. 10 2.00 mm 89.0
1 1/2" 37.5 mm No. 20 850 μm 83.9
$\begin{bmatrix} 1'' & 25 & mm & 100.0 \\ 0.000 & 0.000 & 0.000 \\ 0.$
$3/4$ " 19 mm 99.2 82.0-100.0 No. 60 250 μ m 74.1
$1/2"$ 12.5 mm96.5No. 100150 μ m68.4 $3/8"$ 9.5 mm95.6No. 20075 μ m58.620.0-80.0
$3/8"$ 9.5 mm 95.6 No. 200 75 μ m 58.6 20.0-80.0
COMMENTS
Page 1 of 1 2011. Jun. 12 AMEC Earth & Environmental PERMichaud
Page 1 of 1 2011.Jun.12 AMEC Earth & Environmental PER Complete C

Report System Software Registered to: AMEC Earth & Environmental, Prince George

GRAIN	N SIZE DISTRIE	UTION	ame	ec®
Mount Polley P.O. Box 12 Likely, BC V0L 2N0	Mining Corporation	PROJECT: V	Prince George, BC /M00560.200.4)9-Jun-11	
PROJECT NA	AME: Mount Polley		• •	
TEST No: DATE SAMP DATE TESTI	- •	SAMPLED BY SOURCE: DEPTH:	C: D. Ostritche S-05-11	nko
100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.001	0.010 0.100 GRAIN SIZE 1			SUMMARY Grain size Passing (mm) (%) 76.0 100.0 50.0 100.0 37.5 100.0 25.0 100.0 19.0 99.2 12.5 96.5 9.5 95.6 4.75 93.5 2.00 89.0 0.850 84.8 0.425 80.5 0.250 75.3 0.150 69.2 0.075 59.4
REMARKS:			$D_{10} = #REF!$ $D_{30} = N/A$ $D_{60} = N/A$	GRAVEL 6.52% SAND 34.10% SILT 45.44%
	nichand		Cu = N/A $Cc = N/A$	CLAY 13.94%

TECHNICIAN: USMi chauch

Reporting of these test results constitutes a testing service only.

Engineering interpretation or evaluation of the test results is provided only on written request.

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. то Mount Polley Mining Corp. C.C. P.O. Box 12 Likely, BC VOL 2NO

PROJECT Mount Polley

CONTRACTOR

DATE RECEIVED 2011.Jun.28 DATE TESTED 2011.Jun.29 DATE SAMPLED 2011.Jun.27 SIEVE TEST NO. 9

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Poll Mt. Poll Mt Polle S-06-11		e S		SAMPLED BY TESTED BY TEST METHOD	D.Ostri M.Tenna WASHED	
Percent Passing	3" 2" 19 00 10 10 80 10 10 60 10 10 20 10 10 10 10 10				M40 M50		0 10 20 30 40 50 70 80 90 100
GRAVE	SIZES	PERCENT PASSING	GRADATION LIMITS	SAND SIZES	AND FINES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 99.1 98.3 96.9 95.6 93.2 91.6	97.0-100.0	No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm 75 μm	87.7 83.0 78.3 72.7 62.3 48.6 32.1	67.0-100.0 56.0-100.0 39.0-90.0 20.0-80.0
COMMENTS		1			-	<u>Amia</u>	· · ·

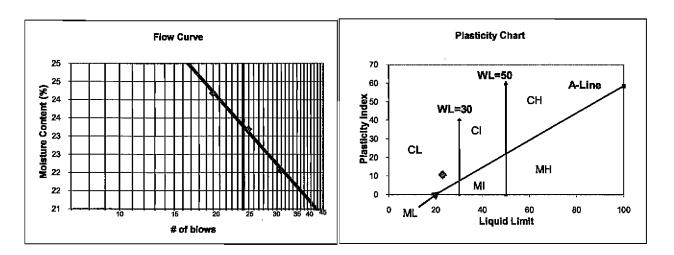
Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

	GRAIN SIZ	E DISTRIBI	U TION		am	ec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC V0L 2N0	orporation	OFFICE: PROJECT: DATE:	Prince Georg VM00560.200 07-Jul-11			
	PROJECT NAME:	Mount Polley					
	TEST No:		SAMPLED 1	BY:	D. Ostritche	enko	
	DATE SAMPLED: DATE TESTED:	27-Jun-11 5-Jul-11	SOURCE: DEPTH:		S-06-11		
						SUMI	1ARY
100.0				A B B B	₽₽₽₽₽₽ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	Grain size	
90.0 -			╘─┼┨╢╢──┤╴┤ <u>┧</u> ┢┢			(mm) 75.0	(%) 100.0
						50.0 37.5	99.1 98.3
80.0 -	┈──╀─┼┼╆╫┦╎╟┨					25.0	96.9
70.0			┝╍┥╍┿┧╍╢╴╴╴╴┤╴╴┤╴╎╴╎╴╎			19.0 12.5	<u>95.6</u> 93.2
						9.5	91.6
50.0 1000 -			└╶┅╎╢╎╬┟──┼┼┼┼┼┼┼	 		4.75 2.00	87.7 82.9
50.0 - 50.0 - 50.0 -						0.850 0.425	80.8 77.0
	╌╌┈╎╴╏╶┟╌┞┨┥╖╽╎					0.250	71.1
40.0			┝╺╋╼┥┥╢╴╴╴┨╴┨╴┨╻┨╽╽			0.150 0.075	64.8 54.0
PEI						0.0467	46.4
30.0 -			┝╾╊┲╋╤╇╬┼╴╴╴╀╴╴╉╴╴┨╴┊╴╎╴╏			0.0330	42.7 37.4
20.0 -						0.0143	33.7 31.4
						0.0083	29.2
10.0 -			┝╾╠╨╎┼┫┥┿╾╸┥╴┥╸┥╴┥╴┥			0.0061	26.2 22.4
~ ~						0.0029	18.7
0.0 - 0.0	01 0.010	0.100 GRAIN SIZE IN	1.000 10 MILLIMETERS	.000	100.000	0.0012	13.5
REMARK	KS:			D10 =	N/A	GRAVEL	12.34%
				D 30 =	N/A	SAND	33.71%
				D60 =	N/A	SILT	38.13%
				Cu =	N/A	CLAY	15.83%
				Cc=	N/A N/A		10.0070
l	IAN: YMicha	,			IWA		

Г

Reporting of these test results constitutes a testing service only.

Engineering interpretation or evaluation of the test results is provided only on written request.


Received Moisture

8.4

ATTERBERG LIMITS ASTM D4318

PROJECT: Project Number:	Mt. Polley VM00560		Sample ID: Date Sampled:	S-06-11 27-Jun-11	
Technician:	J. McDonald		Depth:		
Date:	29-Jun-11		Comments:	Moisture taken from Pr	octor
Liquid Limit					
Trial No.	1	2	3		
No. of Blows	33	26	20		
Tare ID	F	R	J		
Mass Wet + Tare	35.61	35.07	37.11		
Mass Dry + Tare	33.06	32.51	34.09		
Mass Tare	21.50	21.47	21.60		
Mass of Water	2.55	2.56	3.02		
Dry Soil Mass	11.56	11.04	12.49		
Moisture Content	22.1	23.2	24.2		
Liquid Limit	22.9	23.3	23.5	Average Liquid Limit:	23
Plastic Limit					
Trial No.	1	2	3		
Tare ID	18	24	1		
Mass Wet + Tare	23.42	28.40	28.59		
Mass Dry + Tare	23.19	27.63	27.80		
Mass Tare	21.28	21.53	21.49		
Mass of Water	0.23	0.77	0.79		
Dry Soil Mass	1.91	6.10	6.31		
Moisture Content	12.0	12.6	12.5	Average Plastic Limit	12
				Plasticity Index	11

Plasticity Index	PI = LL - PL
I Idolicity much	
Liquidity Index	
	LI = (MC - PL) / PI

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

MOISTURE - DENSITY RELATIONSHIP REPORT

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

PROCTOR NO. 4 DATE TESTED 2011.Jul.05 DATE RECEIVED 2011.Jun.28 DATE SAMPLED 2011.Jun.27

SIZE 50mm RETAINED 4.7	PROCEDURE	ASTM I A: 101 Passin Automa Moist	1.6mm Mo ng 4.75m atic 4718	ld,				
2050	TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)				
	1	2009	1853	8.4				
E 2000 3 1975 ↓ 1975 ↓ 1950 ↓ 1950 ↓ 1950 ↓ 1950 ↓ 1925 ↓	2	2184	1975	10.6				
	3	2226	1973	12.8				
	4	2158	1877	15.0				
				· · ·				
	ZERO AIR V FOR ESTIM SPECIFIC O OF 2.70		MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)				
8 9 10 11 12 13 14 15 16 17 MOISTURE CONTENT (%)	CALCULAT OVERSIZE	ED CORRECTED	1988 2070	11.5 10.0				
COMMENTS Page 1 of 1 2011.Jul.07 AMEC Earth & Environmental PER. Michaud								
Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.								

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. то Mount Polley Mining Corp. C.C. P.O. Box 12 Likely, BC VOL 2NO

PROJECT Mount Polley

CONTRACTOR

DATE RECEIVED 2011.Aug.17 DATE TESTED 2011.Aug.18 DATE SAMPLED 2011.Aug.15 SIEVE TEST NO. 12

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Poll S-07-11,	-	1		SAMPLED BY TESTED BY TEST METHOD	D.Ostri M. Tenna WASHED	
PERCENT PASSING	100 3" 2" 19 90 10 10 10 10 10 10 10		4" 3/8" #4		140 MG		0 10 20 30 40 50 70 80 90 100
GRAVE	LSIZES	PERCENT PASSING	GRADATION	SAND SIZI	ES AND FINES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 98.9 96.2 93.2 91.5 89.0		No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200		84.1 79.3 75.1 71.0 66.3 61.1 51.6	
COMMENTS				MOISTURE	CONTENT 13.	5%	
Page 1 of		2011.Sep		onmental & Infrastru		<u>Mmic</u>	haud

	GRAIN SIZ	E DISTRIB	UTION		am	ec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC V0L 2N0	OFFICE: PROJECT: DATE;	Prince Geory VM00560.20 07-Jul-11	ge, BC 10.4			
	PROJECT NAME:	Mount Polley					
	TEST No:		SAMPLED	BY:	D. Ostritche	enko	
	DATE SAMPLED:	15-Aug-11	SOURCE:		S-07-11, S-	-08-11	
×	DATE TESTED:	22-Aug-11	DEPTH:				
400.0						SUMM	
100.0 -						Grain size (mm)	Passing (%)
90.0 -						75.0 50.0	10D.0 98.9
80.0						37.5	98.9 96.2
						19.0	93.2
70.0						12.5 9.5	91.4 88.8
02 60.0			· · · · · · · · · · · · · · · · · · ·			4.75	83.5 78.3
9 60.0 SVISSE 50.0						0.850	74.4 70.2
						0.250 0.150	65.2 58.0
NE 40.0 -						0.075	51.5 38.8
30.0 -						0.0330	35.0
20.0						0.0209	31.1 28.5
20.0 -						0.0113 0.0081	26.5 24.6
10.0 -	- ∕			\parallel	++++++	0.0059	18.8 16.2
0.0 -						0.0028	15.5 9.7
0.0	001 0.010	0.100 GRAIN SIZE IN	1.000 10 MILLIMETERS	0.000	100.000		
REMARK	<u> </u>	1		D10 =	N/A	GRAVEL	16.51%
				D30 =	N/A	SAND	31.99%
				D60 =	N/A	SILT	38.99%
				C U =	N/A	CLAY	12.52%
	-			Ce =	N/A		

Reporting of these test results constitutes a testing service only.

Engineering interpretation or evaluation of the test results is provided only on written request.

.

ATTERBERG LIMITS ASTM D4318

PROJECT: Project Number: Technician: Date: Mt. Polley VM00560.200.4 M. Tennant 18-Aug-11 Sample ID: Date Sampled: Depth: Comments: S-07-11, S-08-11 15-Aug-11

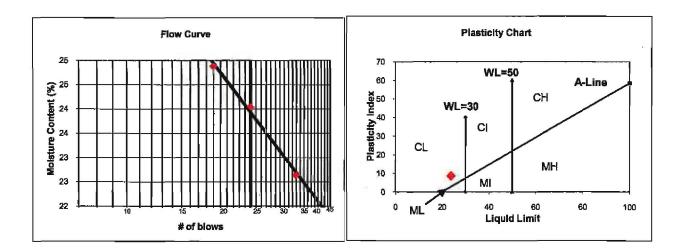
Average Plastic Limit

Plasticity Index

Received Moisture

15

9 13.5


Liquid Limit

Trial No.	1	2	3		1	
No. of Blows	19	25	35			
Tare ID	BH	BG	BK		1	
Mass Wet + Tare	29.46	30.38	34.27		ir I	
Mass Dry + Tare	26.75	27.55	30.87		1	
Mass Tare	15.86	15.78	15.85		1	
Mass of Water	2.71	2.83	3.40		1	
Dry Soil Mass	10.89	11.77	15.02		1	
Moisture Content	24.9	24.0	22.6		1	
Liquid Limit	24.0	24.1	23.7	· · ·	Average Liquid Limit:	24

Plastic Limit

Trial No.	1	2	3	
Tare ID	41	9	11	
Mass Wet + Tare	25.55	24.66	23.07	
Mass Dry + Tare	25.02	24.24	22.82	
Mass Tare	21.44	21.45	21.23	
Mass of Water	0.53	0.42	0.25	
Dry Soil Mass	3.58	2.79	1.59	
Moisture Content	14.8	15.1	15.7	

Plasticity Index	PI = LL - PL
Liquidity Index	LI = (MC - PL) / PI

A division of AMEC Americas Limited 3456 Ople Crescent, Prince George, BC, V2N 2P9

MOISTURE - DENSITY RELATIONSHIP REPORT

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

PROCTOR NO. 5 DATE TESTED 2011. Aug. 20 DATE RECEIVED 2011. Aug. 17 DATE SAMPLED 2011. Aug. 15

INSITU MOISTURE N/A % COMPACTION STA SAMPLED BY Client TESTED BY M.Tennant COMPACTION PRO SUPPLIER Mt. Polley SOURCE S-07-11;S-08-11 RAMMER TYPE MATERIAL IDENTIFICATION PREPARATION MAJOR COMPONENT TILL OVERSIZE CORRE SIZE 50mm RETAINED 19mm S DESCRIPTION CLAYEY OVERSIZE SPECIF ROCK TYPE STANDARD TOTAL NUMBER OF	DCEDURE ECTION METH SCREEN FIC GRAVITY	ASTM I C: 152 Passir Automa Moist	2.4mm Mc ng 19mm atic 4718					
2100	TRIAL NUMBER	WET DENSITY (kg/m3)	DRY DENSITY (kg/m3)	MOISTURE CONTENT (%)				
	1	2088	1942	7.5				
	2	2190	2013	8.8				
	3	2238	1995	12.2				
	4	2157	1877	14.9				
E 2050 2025 2025 L 2000 J 3 J 1975 J 1950 J 1925								
	ZERO AIR V FOR ESTIM SPECIFIC G OF 2.70		MAXIMUM DRY DENSITY (kg/m3)	OPTIMUM MOISTURE CONTENT (%)				
7 8 9 10 11 12 13 14 15 16	CALCULATE		2035	10.0				
MOISTURE CONTENT (%)	OVERSIZE	CORRECTED	2066	9.5				
Page 1 of 1 2011.Aug.23 AMEC Earth & Environmental PER. AMC During Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.								

	Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0	PROJECT NO. CLIENT C.C.	Mount) Polley	Mining	Corp.
I						

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 13 DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Poll S-09-11	ey	• 9		SAMPLED BY TESTED BY TEST METHOD	D.Ostrii G. Micha WASHED	
PERCENT PASSING	100 8" 2" 1% 90 100 100 100 100 90 100 100 100 100 100 100 10 100 <t< td=""><td></td><td>" 3/8" //4</td><td></td><td>420 K60</td><td></td><td>0 10 20 30 40 50 60 70 80 90</td></t<>		" 3/8" //4		420 K60		0 10 20 30 40 50 60 70 80 90
GRAVE	SIZES	PERCENT PASSING	GRADATION LIMITS	SAND SIZI	ES AND FINES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0		No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	and the second sec	99.1 96.9 92.9 87.9 82.0 75.1 62.7	
COMMENTS				MOISTURE	CONTENT 15.	0%	
Page 1 of 1 2011.Sep.25 AMEC Environmental & Infrastructure PER. Michaud							

	GRAIN SIZ	E DISTRI	BUTION		ame	ec®	
	Mount Polley Mining C P.O. Box 12 Likely, BC V0L 2N0	orporation	OFFIC PROJE DATE:	CT: VM00560.2			
	PROJECT NAME:	Mount Polley					
	TEST No: DATE SAMPLED: DATE TESTED:	15-Aug-11 15-Sep-11	SAMPI SOURC DEPTH		D. Ostritch S-09-11	enko	
100.0 - 90.0 - 80.0 - 70.0 - 70.0 - 80.0 - 20.0 - 10.0 - 10.0 - 0.0 - 0.0 -				10.000	100.000	SUMA Grain size (mm) 75.0 50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00 0.850 0.425 0.250 0.425 0.250 0.425 0.250 0.425 0.250 0.425 0.250 0.0476 0.0337 0.0213 0.00476 0.0083 0.0015 0.0043 0.0043	Fassing (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1 96.9 93.4 88.7 83.6 77.5 66.8 56.4 50.8 44.3 40.3 37.9 33.8 29.8 25.8 22.6 17.7
REMAR	<u>(S:</u>	GRAIN SIZE		D_10 =	 N/A	GRAVEL	0.93%
	MMichau			$D_{30} =$ $D_{60} =$ $C_U =$ $C_c =$	N/A N/A N/A 	SAND SILT CLAY	32.24% 47.02% 19.82%

TECHNICIAN: Diffichaud

.

Reporting of these test results constitutes a testing service only.

Engineering interpretation or evaluation of the test results is provided only on written request.

ATTERBERG LIMITS ASTM D4318

.....

PROJECT: Project Number: Technician: Date:	Mt. Polley VM00560.20 G. Michaud 8-Sep-11	00.4	Date S Depth	Sampled:		S-09-11 15-Aug-11	
Liquid Limit	10						
Trial No.	1	2	3				
No. of Blows	34	27	16	3		-	
Tare ID	Н	Т	B	3			
Mass Wet + Tare	34.19	34.93	27.	39			
Mass Dry + Tare	31.44	31.91	24.	72			
Mass Tare	21.63	21.33	15.	82			
Mass of Water	2.75	3.02	2.6	67			
Dry Soil Mass	9.81	10.58	8.9	90			
Moisture Content	28.0	28.5	30	.0			
Liquid Limit	29.2	28.8	28	.4	15	Average Liquid Limit:	29
Plastic Limit					,		2
Trial No.	1	2	3]	
Tare ID	46	26	2.	1			
Mass Wet + Tare	31.17	30.84	32.	10			
Mass Dry + Tare	29.87	29.67	30.	64			
Mass Tare	21.37	21.98	21.	22			
Mass of Water	1.30	1.17	1.4	1 6			
Dry Soil Mass	8.50	7.69	9.4	12			
Moisture Content	15.3	15.2	15	.5		Average Plastic Limit	15
			<u>,</u>			Plasticity Index	14
						Received Moisture	15.0
Plasticity Index	PI = LL - PL		1				
Liquidity Index	Li = (MC - P	L) / PI					
<u> </u>	,						
F	low Curve					Plasticity Chart	
					70	WL=50	
31 (%) 30 Hegu 30					60 - 50 - 40 -	WL=30 CH CH	ne
30 30 400 30 <td></td> <td></td> <td></td> <td>Plasticity Index</td> <td>30 - 20 - CL 10 -</td> <td>СІ МН</td> <td></td>				Plasticity Index	30 - 20 - CL 10 -	СІ МН	
28 27 10 16 20 26 20 26 30 35 40 45					•	MI 20 40 60 80	100
	# of blows	*				Liquid Limit	

> PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 14 DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Poll S-10-11	ey		TESTE	LED BY ED BY METHOD	D.Ostri G. Mich WASHED	NE A CONVERSE INTERES
PERCENT PASSING	100 3° 2° 1% 90 100 100 100 100 100 100 100 100 100 1			№0 й20 жи0	M60		0 10 20 90 40 50 70 80 90 100
GRAVEL	. SIZES	PERCENT	GRADATION LIMITS	SAND SIZES AND	FINES	PERCENT	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 98.1 97.2 95.2		No. 40 42 No. 60 29 No. 100 19		92.9 89.8 85.5 79.7 73.3 66.8 56.6	
COMMENTS					л 9.	4%	I
Page 1 of		2011.Sep		onmental & Infrastructure g interpretation or evaluation	PER		

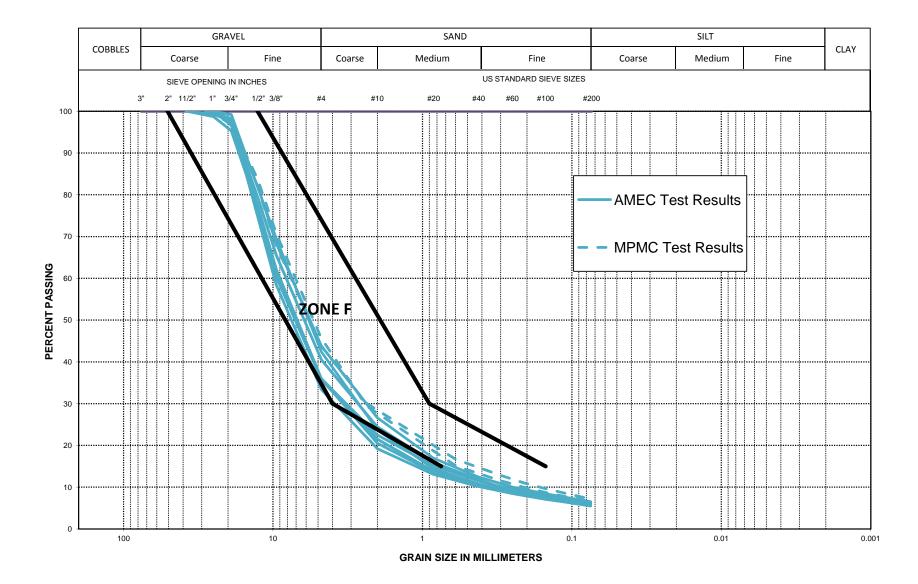
Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request. Report System Software Registered to: AMEC Earth & Environmental, Prince George

.

	GRAIN SIZ	E DISTRIB	UTION		am	ec®	
	Mount Polley Mining Co P.O. Box 12 Likely, BC VOL 2N0	prporation	OFFICE: PROJECT: DATE:	Prince Geor VM00560.20 07-Jul-11			
	PROJECT NAME:	Mount Polley					
	TEST No: DATE SAMPLED: DATE TESTED:	15-Aug-11 15-Sep-11	SAMPLED SOURCE: DEPTH:	BY:	D. Ostritche S-10-11	enko	
100.0 - 90.0 - 80.0 - 70.0 - 80.0 - 70.0 - 50.0 - 40.0 - 30.0 - 20.0 - 10.0 - 0.0 - 0.0 - 0.0 -		0.100 GRAIN SIZE II	1.000 1 N MILLIMETERS			SUMM Grain size (mm) 75.0 50.0 37.5 25.0 19.0 12.5 9.5 4.75 2.00 0.850 0.425 0.250 0.425 0.250 0.425 0.250 0.150 0.075 0.0474 0.0335 0.0212 0.0143 0.0115 0.0083 0.0061 0.0043 0.0030	IARY Passing (%) 100.0 98.1 98.1 97.2 95.2 92.9 89.8 85.5 79.9 74.2 68.8 59.5 47.1 42.7 38.3 33.9 32.4 28.7 26.5 22.1 19.1 5.9
REMAR	IAN; UMichou			$D_{10} =$ $D_{30} =$ $D_{60} =$ $C_U =$ $C_c =$	N/A N/A N/A N/A N/A	GRAVEL SAND SILT CLAY	7.14% 33.40% 47.84% 11.62%

Reporting of these test results constitutes a testing service only.

Engineering Interpretation or evaluation of the test results is provided only on written request.

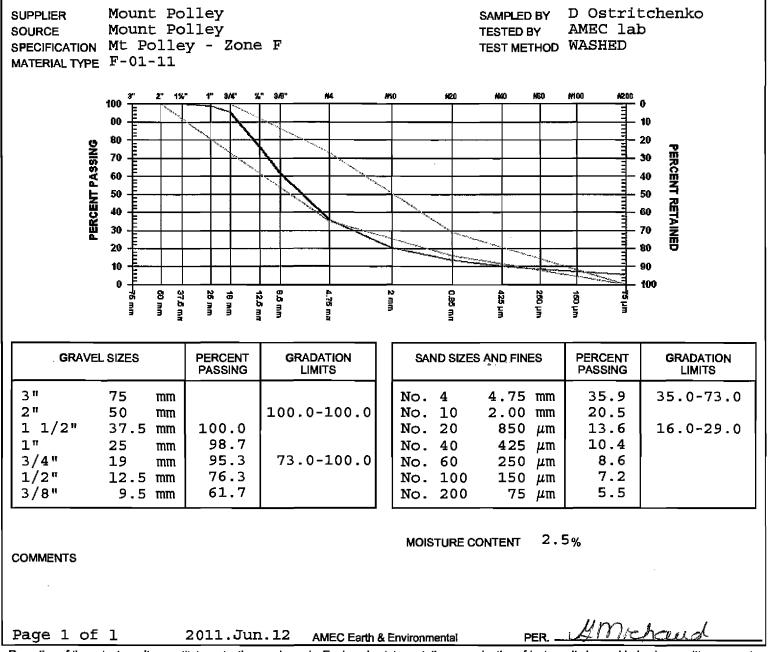

ATTERBERG LIMITS ASTM D4318

PROJECT: Project Number: Technician: Date:	Mt. Polley VM00560.20 G. Michaud 8-Sep-11	00.4	Sampl Date S Depth: Comm	ampled:	S-10-11 15-Aug-11
Liquid Limit					
Trial No.	1	2	3		
No. of Blows	34	27	13		
Tare ID	AS	s	AG	6	
Mass Wet + Tare	34.01	33.58	33.6	50	
Mass Dry + Tare	31.54	31.16	31.0	0	
Mass Tare	21.42	21.47	21.4	14	
Mass of Water	2.47	2.42	2.6	0	
Dry Soil Mass	10.12	9.69	9.5	6	
Moisture Content	.24.4	25.0	27.	2	
Liquid Limit	25.4	25.2	25.	1	Average Liquid Limit: 25
Plastic Limit	•			•	
Trial No.	1	2	3		
Tare ID	36	15	40		
Mass Wet + Tare	31.10	31.83	30.3	39	
Mass Dry + Tare	29.88	30.60	29.2	25	
Mass Tare	21.48	22.03	21.4	15	
Mass of Water	1.22	1.23	1.1	4	
Dry Soil Mass	8.40	8.57	7.8	0	
Moisture Content	14.5	14.4	14.	6	Average Plastic Limit 14
			-		Plasticity Index 11
					Received Moisture 9.4
Plasticity Index	PI = LL - PL		1		
Liquidity Index	LI = (MC - P				
		_/		3	
	low Curve		i		Plasticity Chart
20				_	
				70	WL=50
28 1				80 -	A-Line
W Water Content of Con				Plasticity Index - 05 -	WL=30 CH
₩ ²⁷		╋┛┼┼┼┼┼┼┼		₽ ⁴⁰	
9 ²⁶		╉┫┼┼┦┼┦┤╎╎╎╎	}+ 	₩ <u>3</u> 30	
1 a a 26 b b b b b b b b b b				88 C	
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	-++++++++++++++++++++++++++++++++++++++	- N		10 -	💊 МН
25	_┼ ┦╎┥┥ ┫┤┫╿┨			<u> </u>	MI
24	╵┊╵╵║║╢╢			0 M	20 40 60 80 100
10	15 20 # of blows	20 30 30	2 40 40	⁰ ML	Liquid Limit

~

۰. • ZONE F – Filter Testing Results

Mt. Polley Mine Tailings Storage Facility 2011 As-built/Annual Review Report


PROJECT NO.	VM0560)		
CLIENT	Mount	Polley	Mining	Corp.
C.C.				

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 1 DATE RECEIVED 2011.JUN.02 DATE TESTED 2011.JUN.02 DATE SAMPLED 2011.May.31

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

ŧ

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

> PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 2 DATE RECEIVED 2011.JUN.02 DATE TESTED 2011.JUN.02 DATE SAMPLED 2011.May.31

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mount Po Mount Po Mt Polle F-02-11	olley	e F		SAMPLED BY TESTED BY TEST METHOD	D Ostri AMEC la WASHED	
PERCENT PASSING	100 3 ⁿ 2 ⁿ 10 90 10 10 10 80 10 10 10 70 10 10 10 50 10 10 10 10 10 10 10 10 10 10 10		8" 3/8" M4				0 10 20 30 40 50 80 50 80 90 100
GRAVE	SIZES	PERCENT	GRADATION LIMITS	SAND SIZE	ES AND FINES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 99.2 81.5 69.5	100.0-100.0 73.0-100.0	No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200		42.4 23.7 14.5 10.8 8.9 7.5 6.0	35.0-73.0 16.0-29.0
COMMENTS			·	MOISTURE	CONTENT 3.	5%	·/
Page 1 of		2011.Jur	1.12 AMEC Earth & service only. Engineering		PER		chaud

A division of AMEC Americas Limited 3456 Ople Crescent, Prince George, BC, V2N 2P9

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

то	Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0
----	---

PROJECT Mount Polley

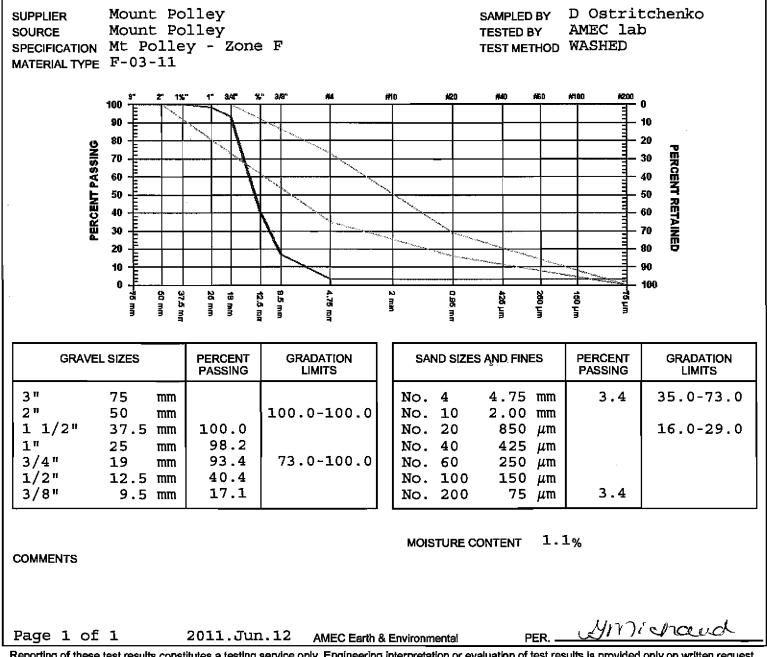
CONTRACTOR

SIEVE TEST NO. 11 DATE RECEIVED 2011. Jun. 28 DATE TESTED 2011. Jun. 29 DATE SAMPLED 2011. Jun. 27

SUPPLIERMt. PolleySAMPLED BYD.OstritchenkoSOURCEZone FTESTED BYM.TennantSPECIFICATIONMt Polley - Zone FTEST METHODWASHEDMATERIAL TYPEF-04-11F-04-11F-04-11	
PERCENT RETAINED	
GRAVEL SIZES PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS SAND SIZES AND FINES PERCENT GRADATION	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
MOISTURE CONTENT 3.7% COMMENTS Page 1 of 1 2011.Jul.07 AMEC Earth & Environmental PER. Michaud	

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9


PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 3 DATE RECEIVED 2011. JUN. 02 DATE TESTED 2011. JUN. 02 DATE SAMPLED 2011. May. 31

	<i></i>	PROJECT NO.	VM0560)		
TO Mount Polley Mining P.O. Box 12 Likely, BC VOL 2N0	Corp.	CLIENT C.C.	Mount	Polley	Mining	Corp.

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 18 DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15

SUPPLIER Mt. Poll SOURCE SPECIFICATION MATERIAL TYPE F-05-11	.ey	SAMPLED BY TESTED BY TEST METHOD	D.Ostritchenko J. McDonald WASHED
Dec Since A constraints of the second		MO 000 440 000	M100 M200 0 10 20 PERCENT RETAINED 60 70 80 90 100 10 10 10 10 10 10 10 10
GRAVEL SIZES	PERCENT GRADATION PASSING LIMITS	SAND SIZES AND FINES	PERCENT GRADATION PASSING LIMITS
3" 75 mm 2" 50 mm 1 1/2" 37.5 mm 1" 25 mm 3/4" 19 mm 1/2" 12.5 mm 3/8" 9.5 mm	100.0 99.3 97.5 78.9 65.5	No.44.75 mmNo.102.00 mmNo.20 $850 \ \mu m$ No.40 $425 \ \mu m$ No.60250 \ \mu mNo.100150 \ \mu mNo.20075 \ \mu m	40.5 24.4 16.0 11.9 9.7 8.1 6.3
COMMENTS		MOISTURE CONTENT 3.	9%
Page 1 of 1		rironmental & Infrastructure PER	Imich cend

AMEC Environmental & Infrastructure

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

то	Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0	PROJECT NO. CLIENT C.C,	VM0560 Mount) Polley	Mining	Corp.

PROJECT Mount Polley

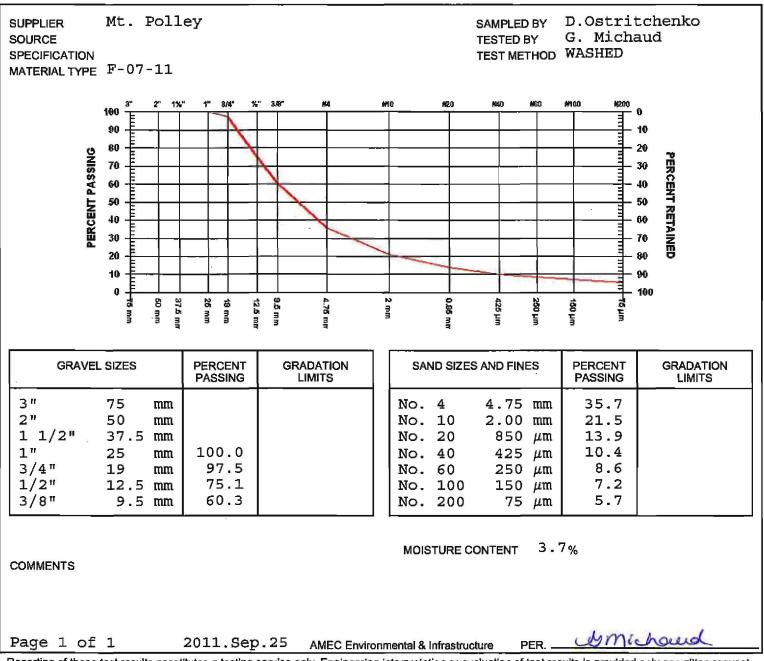
CONTRACTOR

SIEVE TEST NO. 19 DATE RECEIVED 2011. AUG. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. AUG. 15

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Poll Corner 3 F-06-11		kpile	SAMPLED BY TESTED BY TEST METHON	D.Ostritchenko G. Michaud WASHED	
PERCENT PASSING	100 3" 2" 1% 90 100 100 100 80 100 100 100 60 10 100 100 100 10 100 100 100 100 100 100		" 9/6" #4	M10 M20 N40 M60	PERCENT RETAINED	
GRAVEI	SIZES	PERCENT PASSING	GRADATION LIMITS	SAND SIZES AND FINES	PERCENT GRADATI PASSING LIMITS	
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 98.0 81.5 68.4		No.44.75mmNo.102.00mmNo.20850 μ mNo.40425 μ mNo.60250 μ mNo.100150 μ mNo.20075 μ m	26.6 17.0 12.5 10.0 8.4	
COMMENTS			v	MOISTURE CONTENT 5	.0%	
Page 1 of		2011 . Sep		onmental & Infrastructure PER.	Umichaud	request

то

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9


	PROJECT NO. VM	10560	×
-			Mining Corp.
Mount Polley Mining Corp.	C.C.		
P.O. Box 12			
Likely, BC			
1107 0170			

PROJECT Mount Polley

P.O. Box 12 Likely, BC VOL 2NO

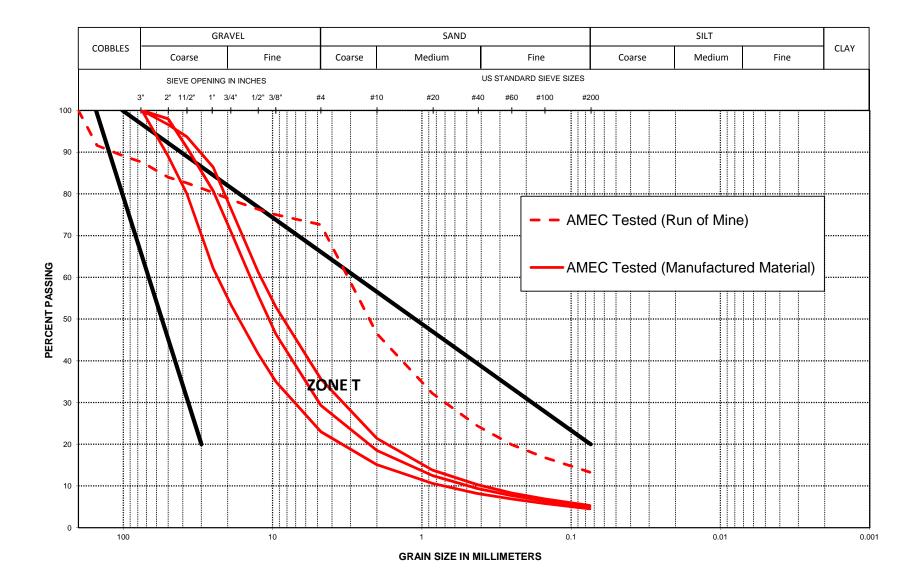
CONTRACTOR

DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15 SIEVE TEST NO. 20

TO Mount Polley Mining Corp. PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR


SIEVE TEST NO. 21 DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15

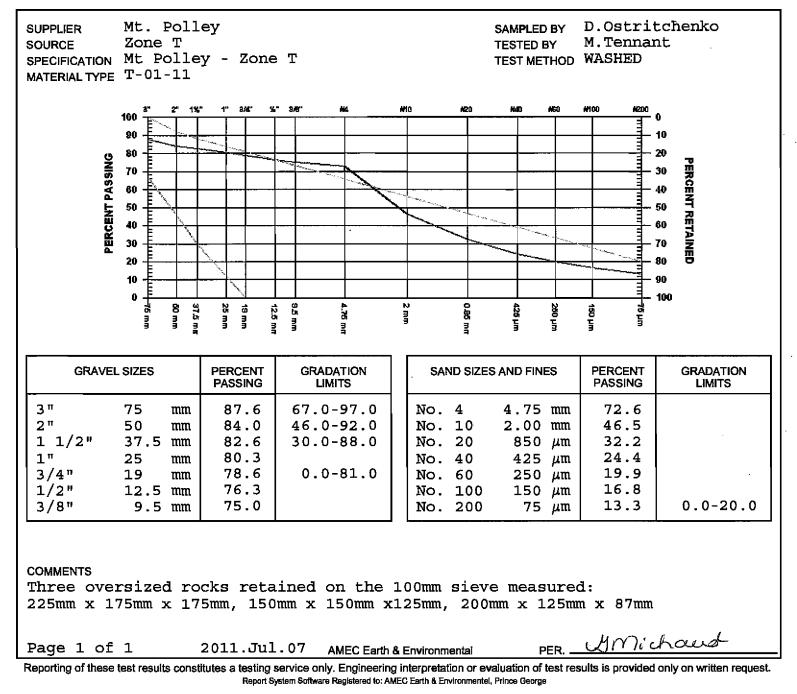
SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Polley F-08-11			SAMPLED BY TESTED BY TEST METHOD	D.Ostrit G.Michau WASHED	
PERCENT PASSING	100 3" 2" 1%" 1" 8/4" %" 3" 90 10 10 10 10 10 10 80 10 10 10 10 10 70 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		NO #20	1449 M50		0 10 20 90 40 50 60 70 80 90 100
GRAVEL	SIZES PERCENT PASSING	GRADATION LIMITS	SAND SIZE	S AND FINES	PERCENT PASSING	GRADATION LIMITS
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 100.0 19 mm 96.6 12.5 mm 76.7 9.5 mm		No. 4 No. 10 No. 20 No. 40 No. 60 No. 100 No. 200	4.75 mm 2.00 mm 850 μm 425 μm 250 μm 150 μm 75 μm	36.0 22.5 15.2 11.5 9.4 7.9 6.2	
COMMENTS	<u> </u>		MOISTURE	CONTENT 3.1	2%	<u> </u>
Page 1 of Reporting of these	1 2011.Sep.2		mental & Infrastru		Umi sults is provided	

Report System Software Registered to: AMEC Earth & Environmental, Prince George

ZONE T – Transition Testing Results

Mt. Polley Mine Tailings Storage Facility 2011 As-built/Annual Review Report

A division of AMEC Americas Limited 3456 Opie Crescent, Prince George, BC, V2N 2P9

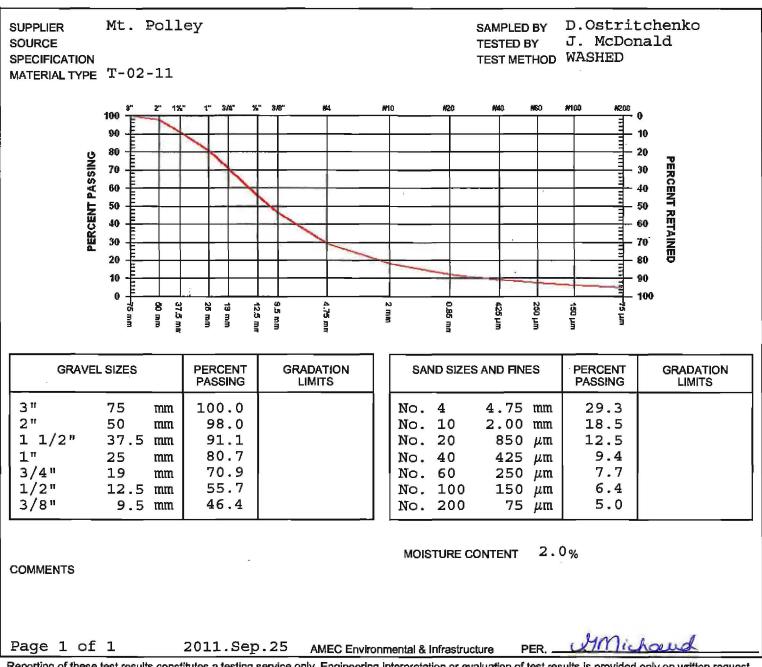

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

то	Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 10 DATE RECEIVED 2011. JUN. 28 DATE TESTED 2011. JUN. 29 DATE SAMPLED 2011. JUN. 27



TO Mount Polley Mining Corp. PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 15 DATE RECEIVED 2011.Aug.17 DATE TESTED 2011.Sep.08 DATE SAMPLED 2011.Aug.15

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request. Report System Software Registered to: AMEC Earth & Environmental, Prince George

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

TO Mount Polley Mining Corp. P.O. Box 12 Likely, BC VOL 2N0

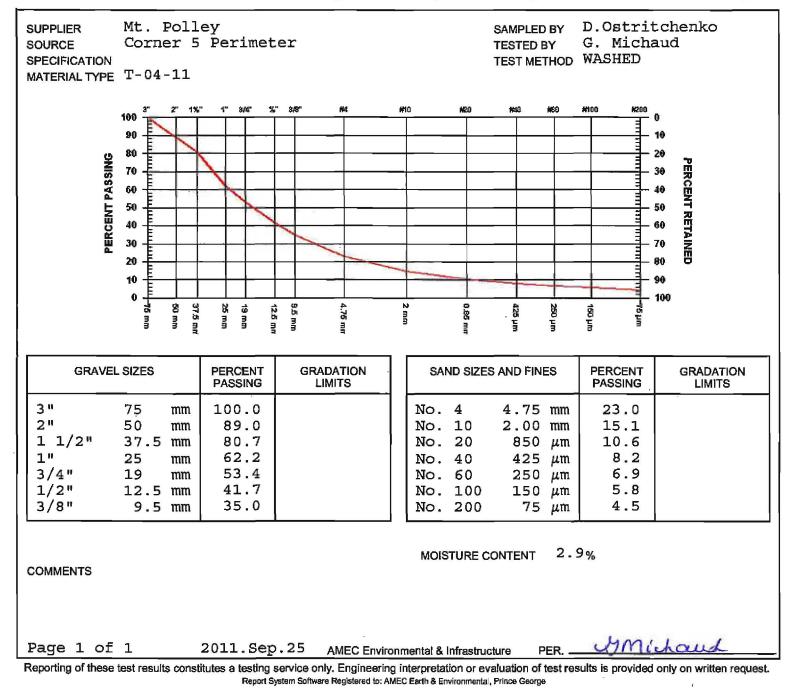
PROJECT Mount Polley

CONTRACTOR

SIEVE TEST NO. 16 DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15

SUPPLIER SOURCE SPECIFICATION MATERIAL TYPE	Mt. Poll T-03-11	еу			SAMPLED B TESTED BY TEST METH		
PERCENT PASSING	100 ^{8*} ^{2*} 1% 90 10 10 10 10 10 10 10 10						0 10 20 90 40 50 60 70 80 90 100
GRAVE	L SIZES	PERCENT PASSING	GRADATION LIMITS	SAND S	ZES AND FINES	S PERCENT PASSING	GRADATION
3" 2" 1 1/2" 1" 3/4" 1/2" 3/8"	75 mm 50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm	100.0 96.6 93.7 86.4 76.5 61.3 52.9		No. 4 No. 10 No. 20 No. 40 No. 60 No. 10 No. 20	850 425 250 0 150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
MOISTURE CONTENT 2.1%							
Page 1 of 1 2011.Sep.25 AMEC Environmental & Infrastructure PER Michaed Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.							

Report System Software Registered to: AMEC Earth & Environmental, Prince George

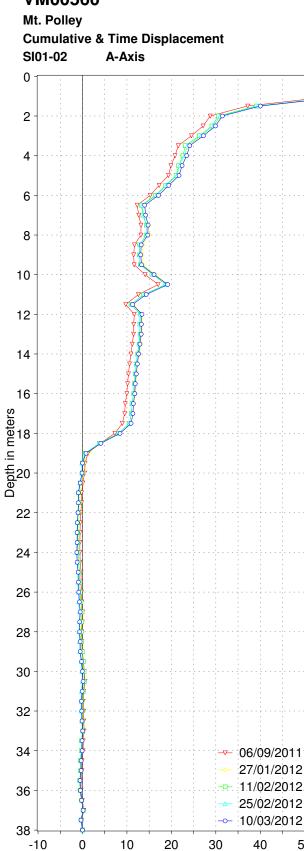

PROJECT NO. VM0560 CLIENT Mount Polley Mining Corp. C.C.

то	Mount Polley Mining P.O. Box 12 Likely, BC VOL 2N0	Corp.

PROJECT Mount Polley

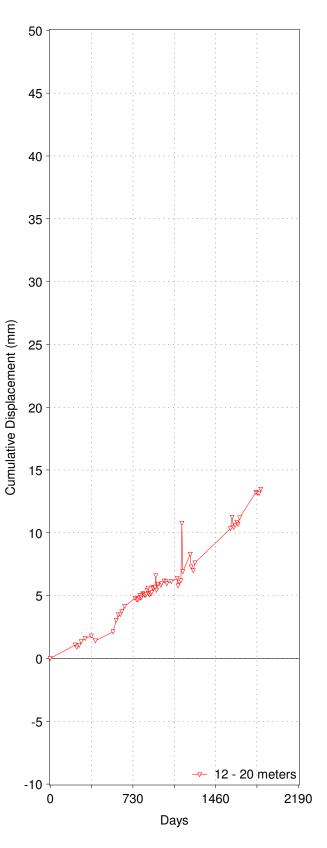
CONTRACTOR

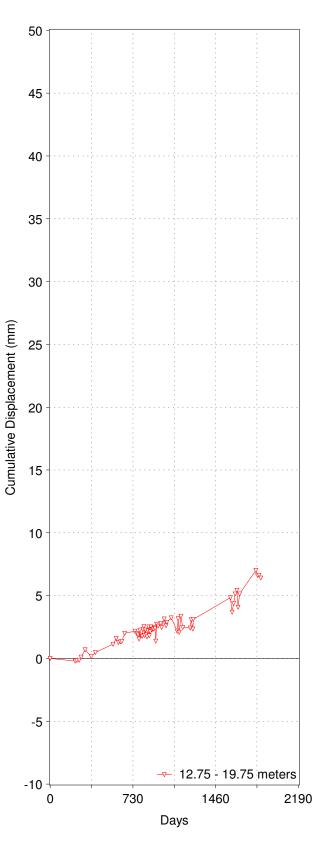
SIEVE TEST NO. 17 DATE RECEIVED 2011. Aug. 17 DATE TESTED 2011. Sep. 08 DATE SAMPLED 2011. Aug. 15

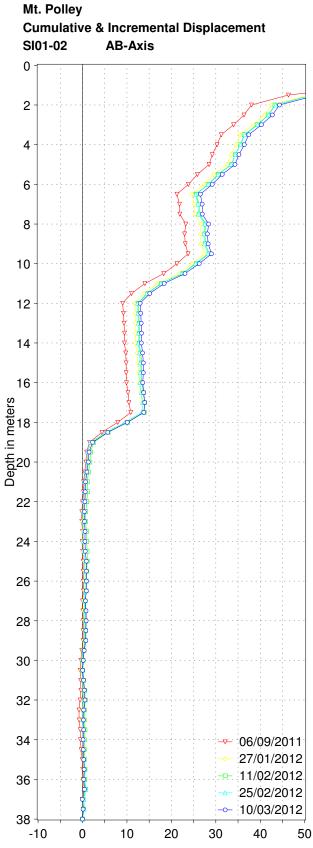


APPENDIX B

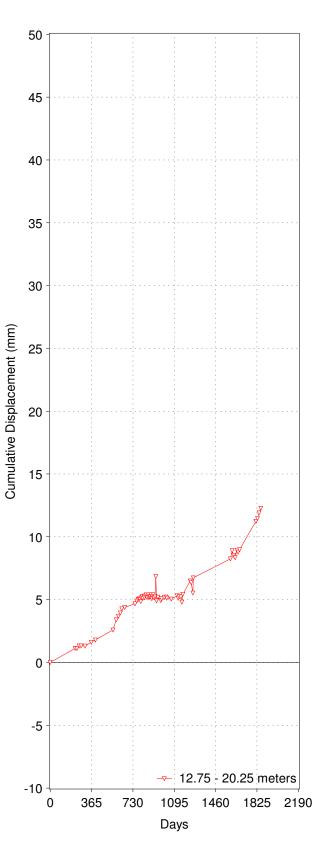
INSTRUMENTATION PLOTS

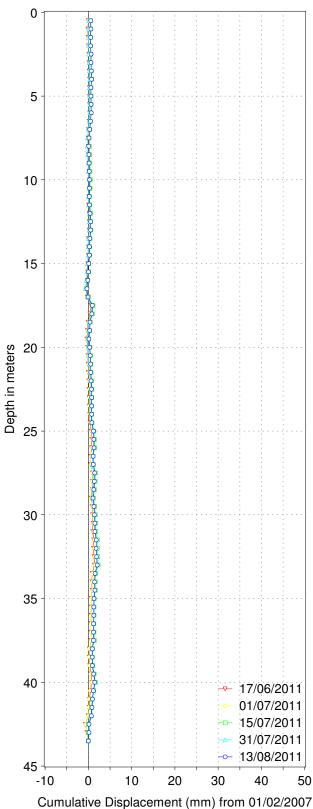

Inclinometer Plots

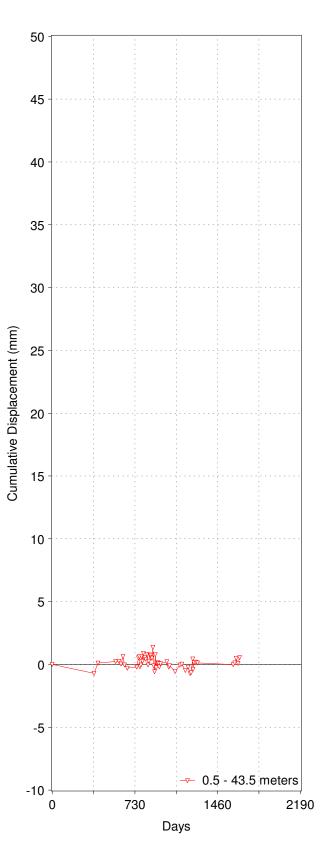

50

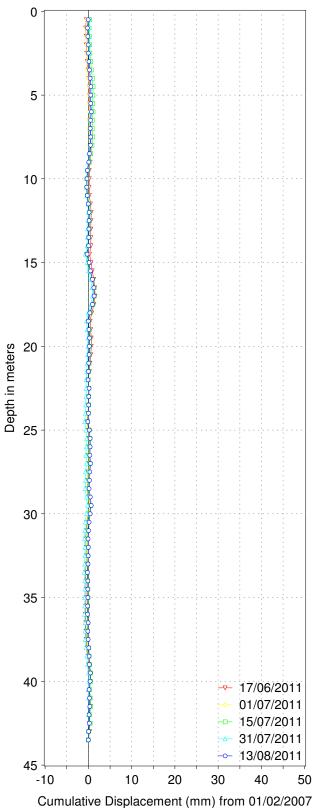


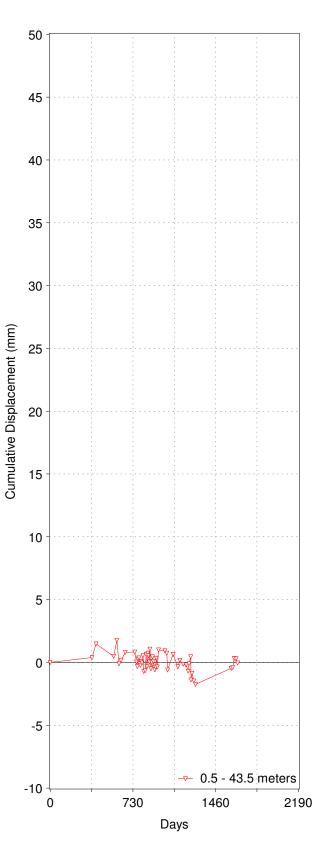
Mt. Polley Cumulative & Incremental Displacement SI01-02 B-Axis



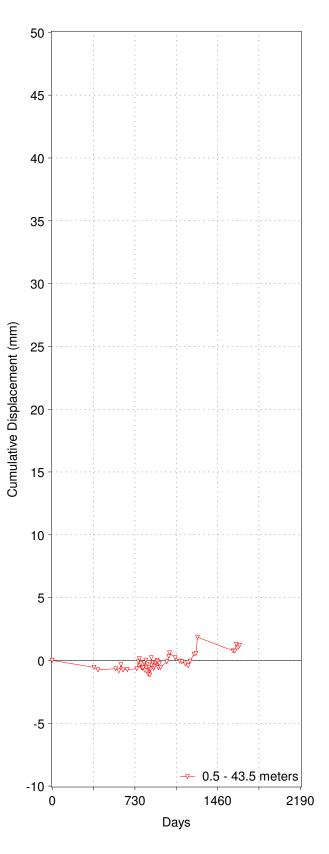


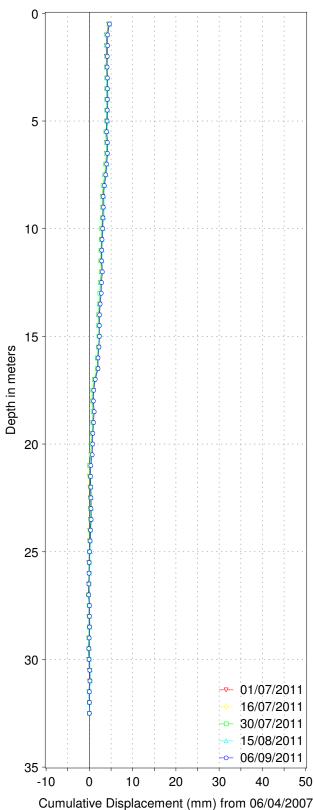

Cumulative Displacement (mm) from 07/02/2007


Mt. Polley Cumulative & Time Displacement SI06-01 A-Axis

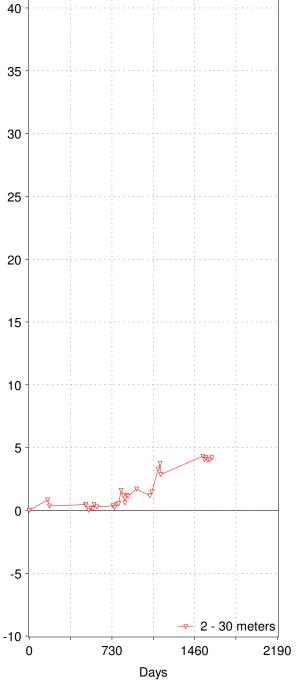


Mt. Polley Cumulative & Time Displacement SI06-01 B-Axis



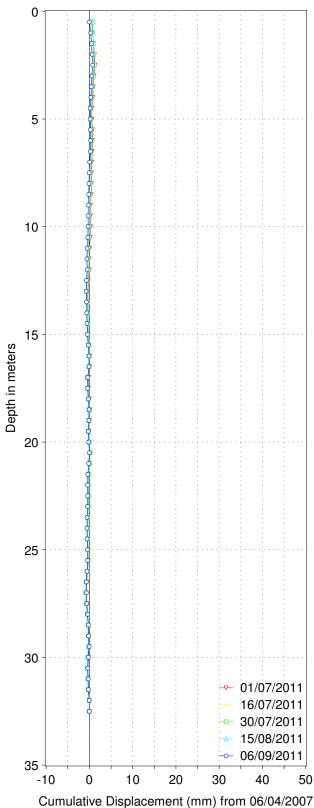

Mt. Polley Cumulative & Time Displacement SI06-01 AB-Axis

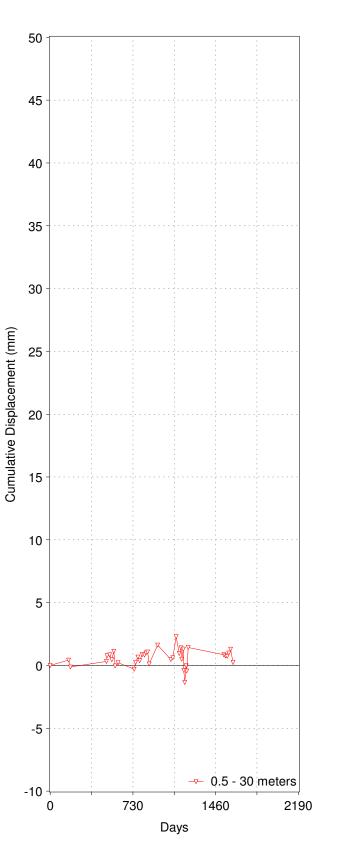
Mt. Polley **Cumulative & Time Displacement** SI06-02 A-Axis



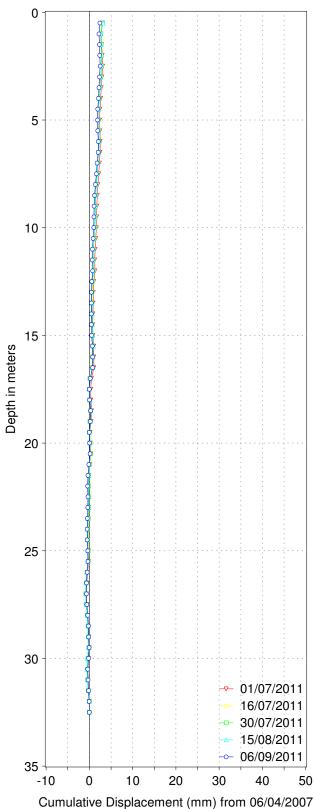
50

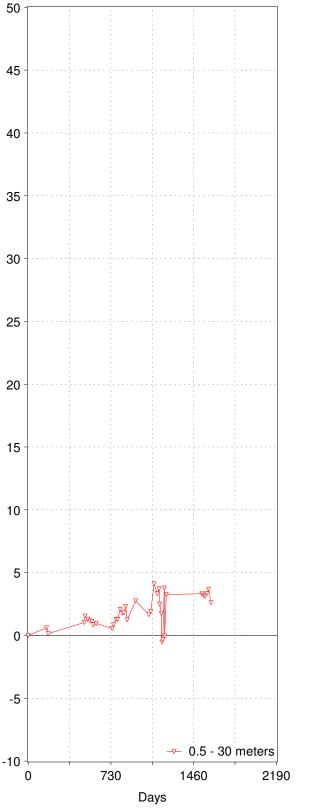
45


Cumulative Displacement (mm)

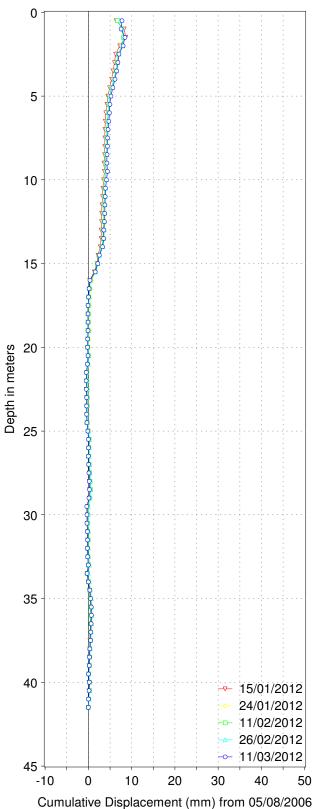


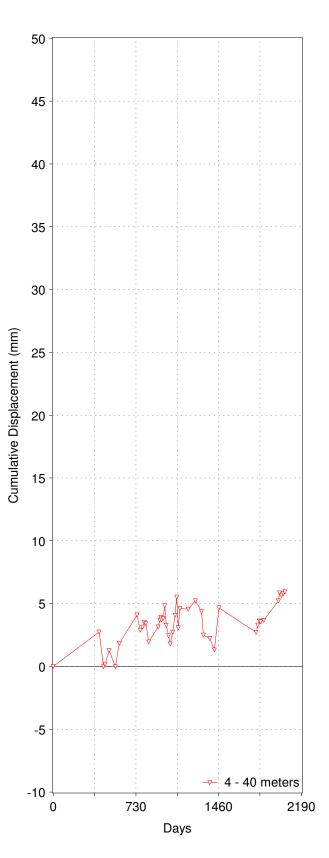
AMEC010609_0110


Mt. Polley Cumulative & Time Displacement SI06-02 B-Axis

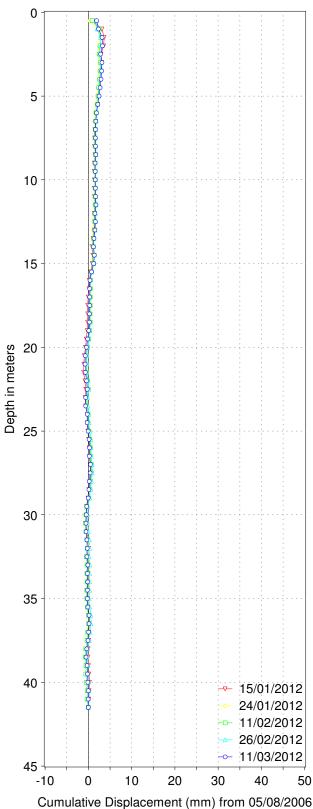


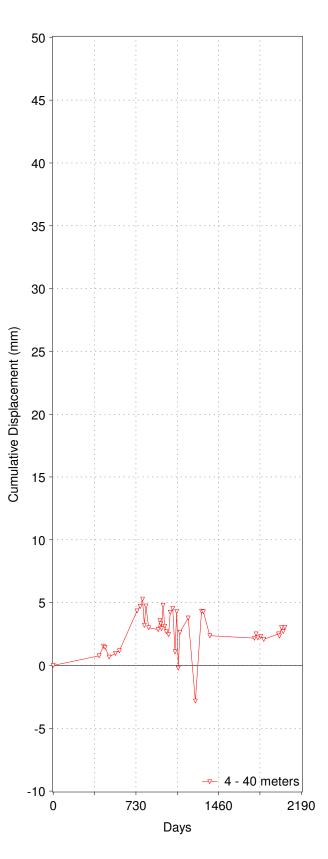
Mt. Polley Cumulative & Time Displacement SI06-02 AB-Axis

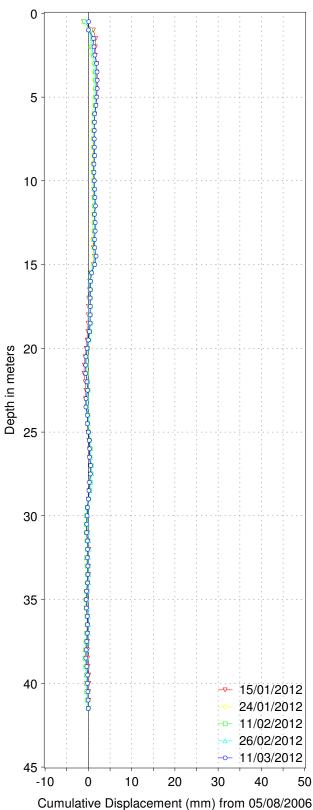


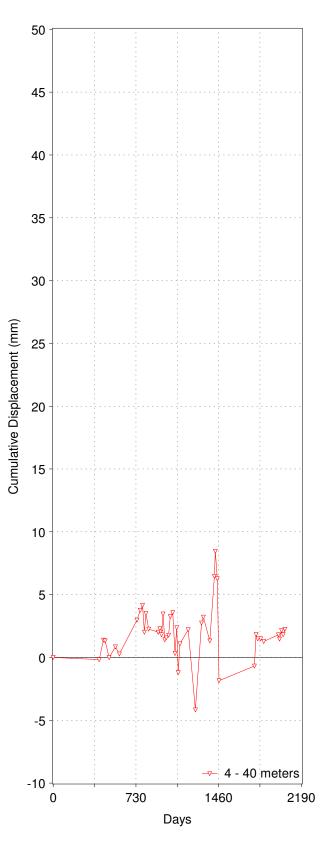


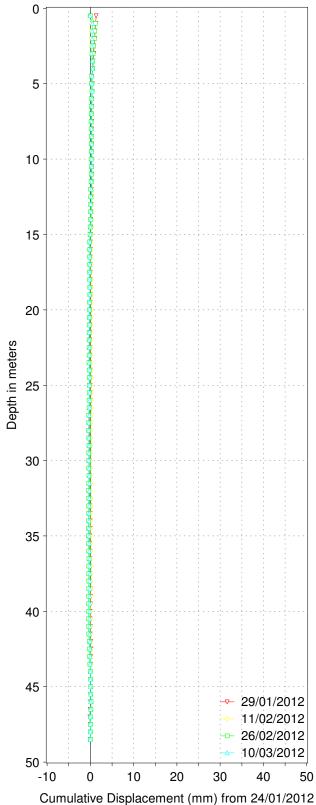
Cumulative Displacement (mm)

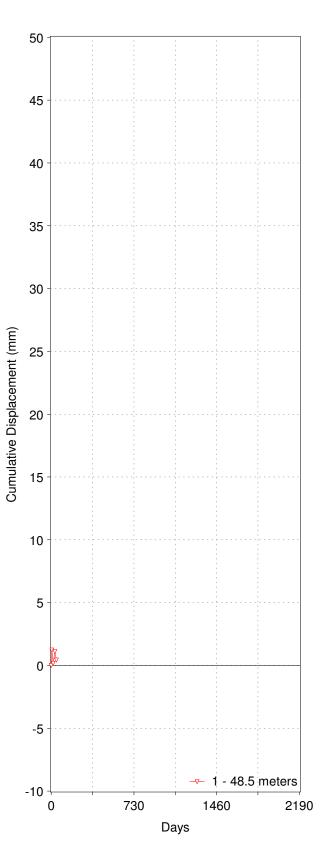

Mt. Polley Cumulative & Time Displacement SI06-03 A-Axis

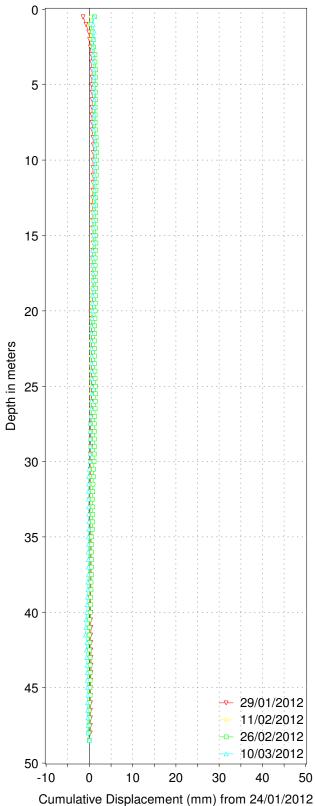


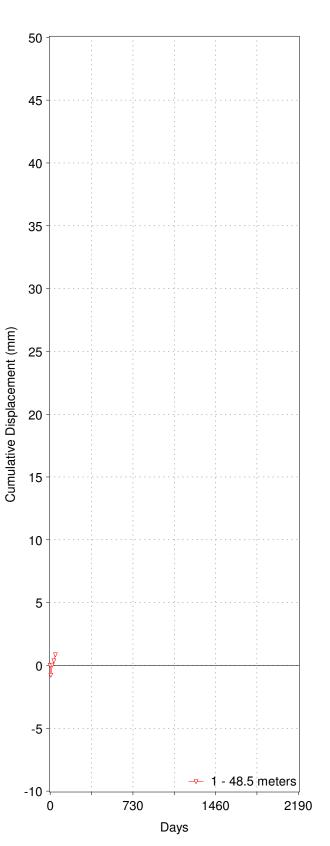

Mt. Polley Cumulative & Time Displacement SI06-03 B-Axis



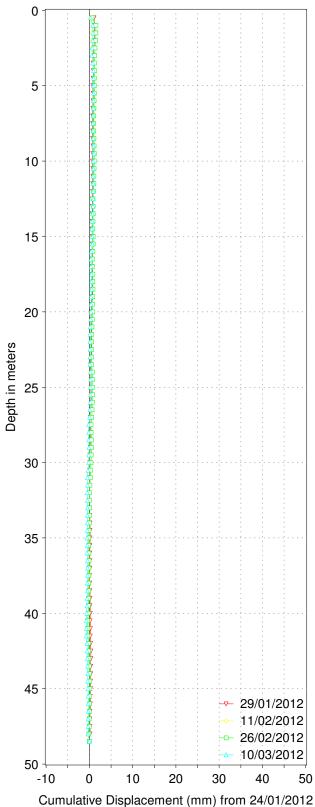

Mt. Polley Cumulative & Time Displacement SI06-03 AB-Axis

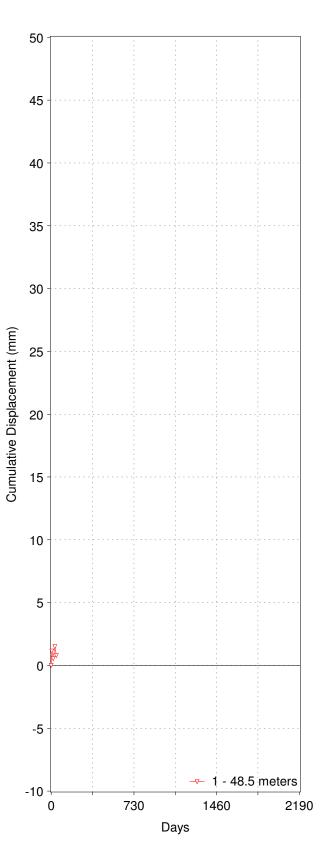




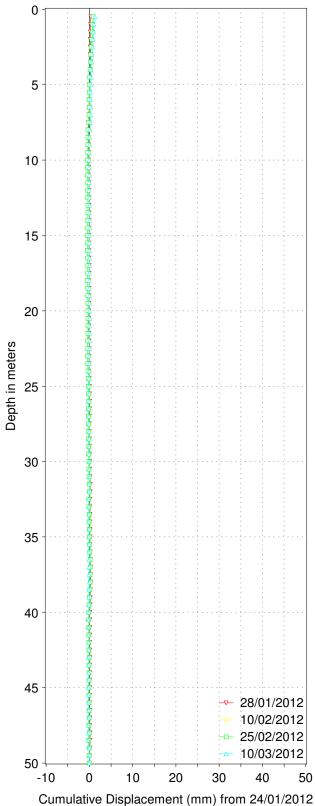


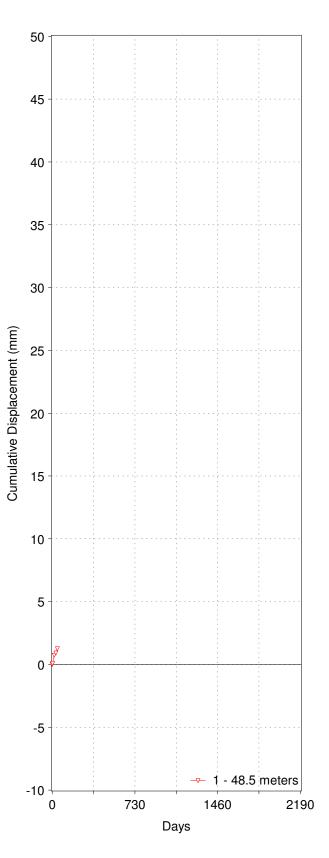
Mt. Polley Cumulative & Time Displacement SI11-01 B-Axis

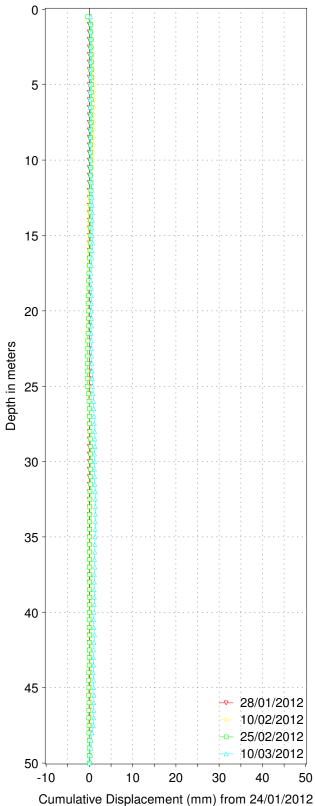


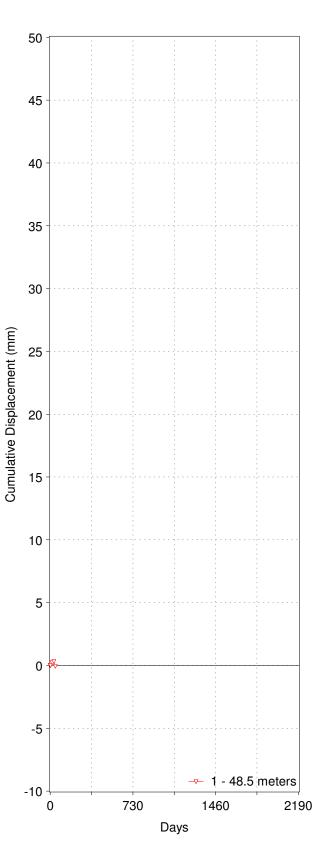


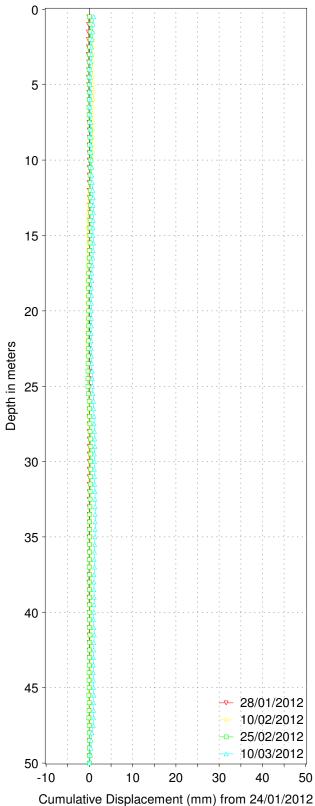
AMEC010609_0117

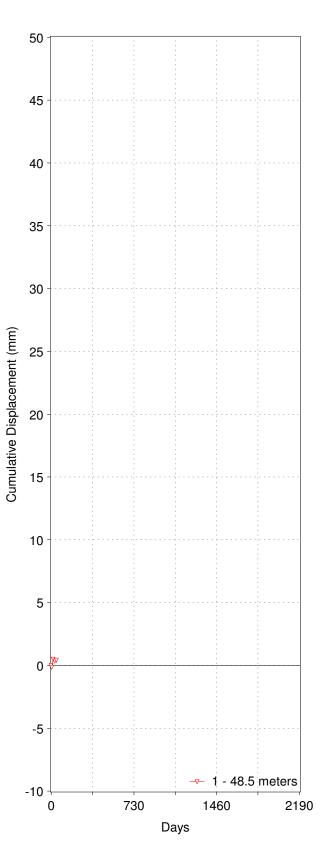

Mt. Polley Cumulative & Time Displacement SI11-01 AB-Axis



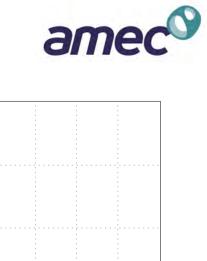


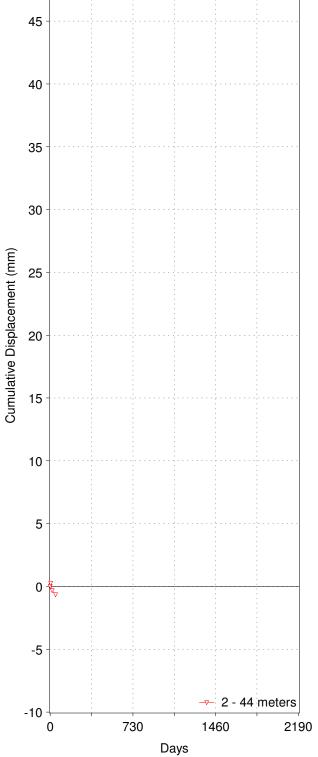



Mt. Polley Cumulative & Time Displacement SI11-02 B-Axis

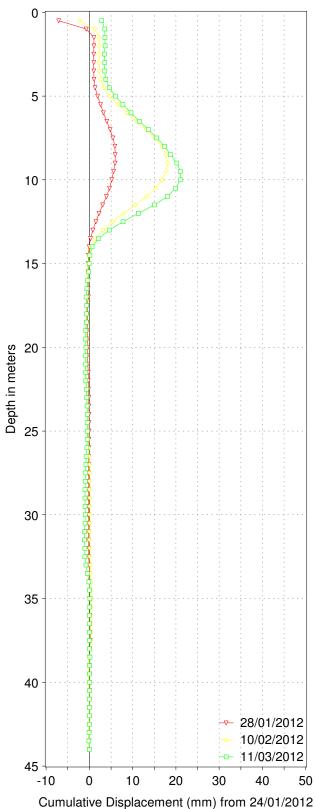


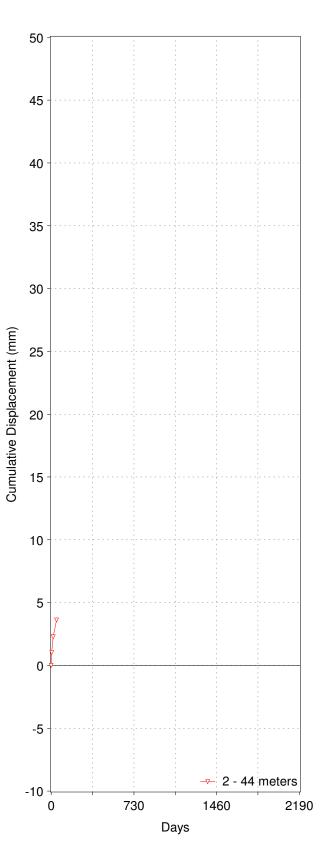

Mt. Polley Cumulative & Time Displacement SI11-02 AB-Axis





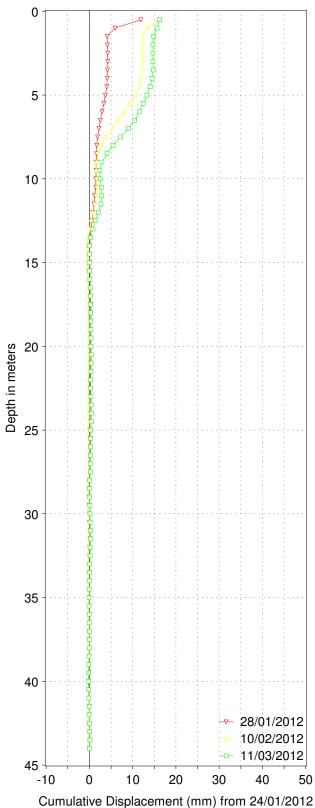
Mt. Polley Cumulative & Time Displacement SI11-04 A-Axis

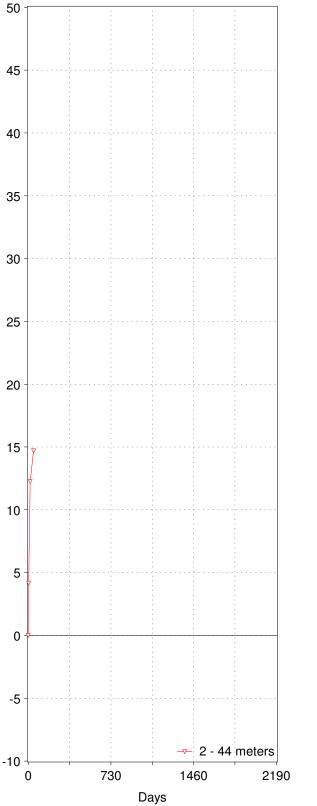




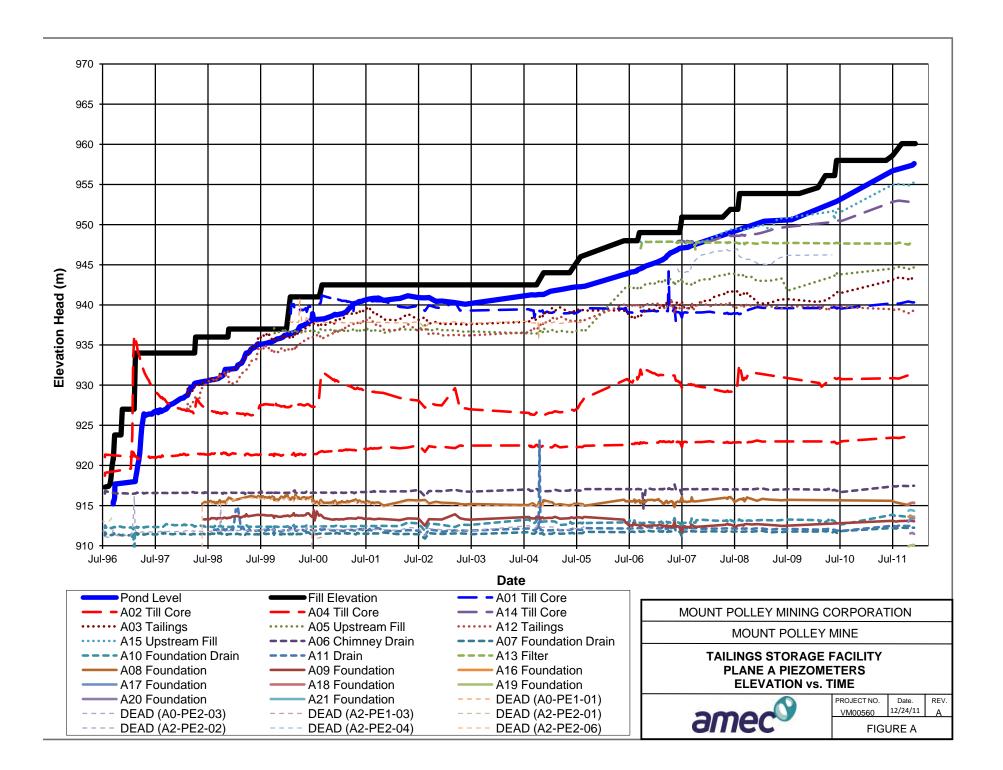
50

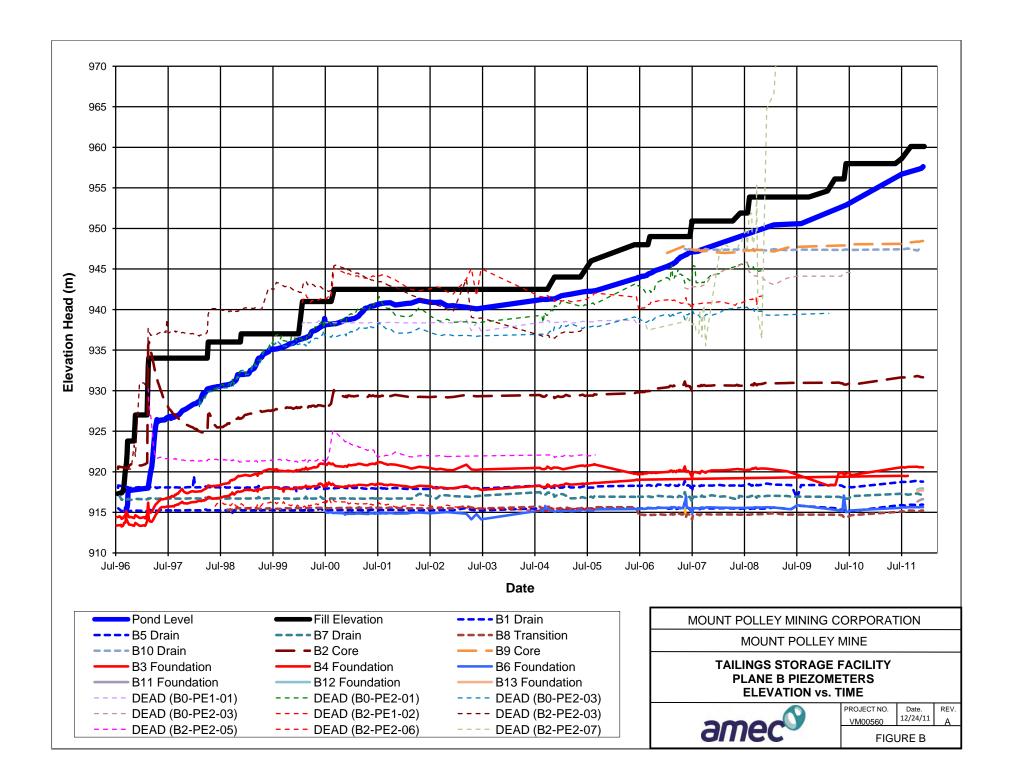
AMEC010609_0122

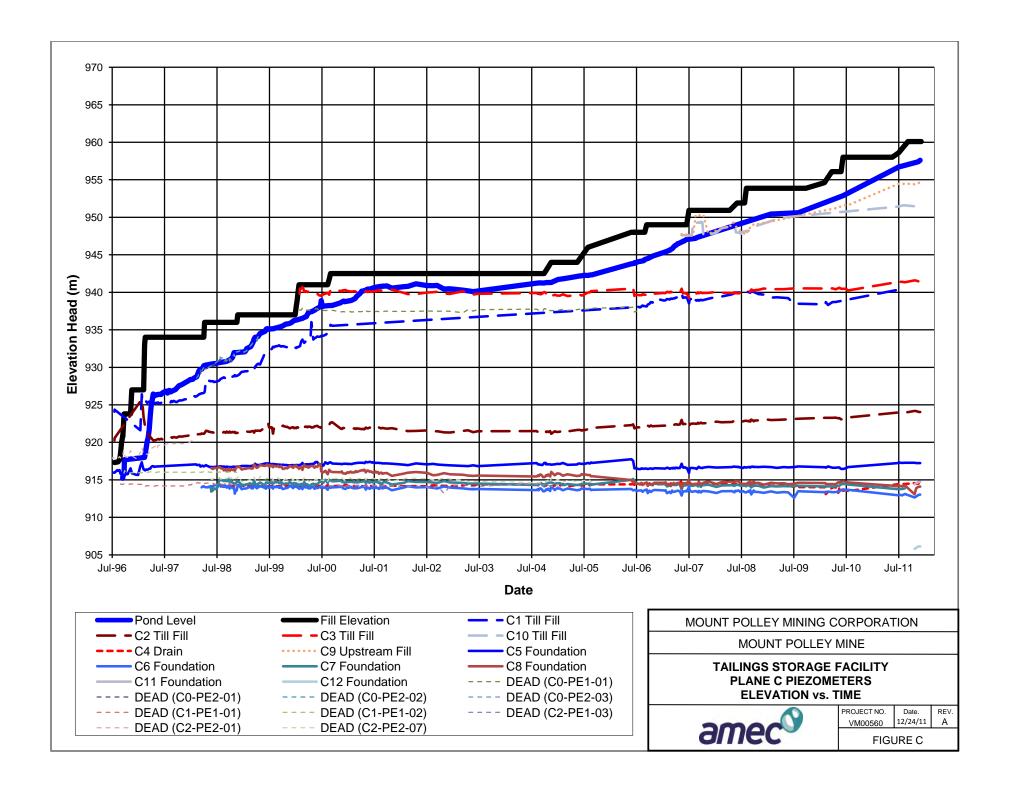

Mt. Polley Cumulative & Time Displacement SI11-04 B-Axis

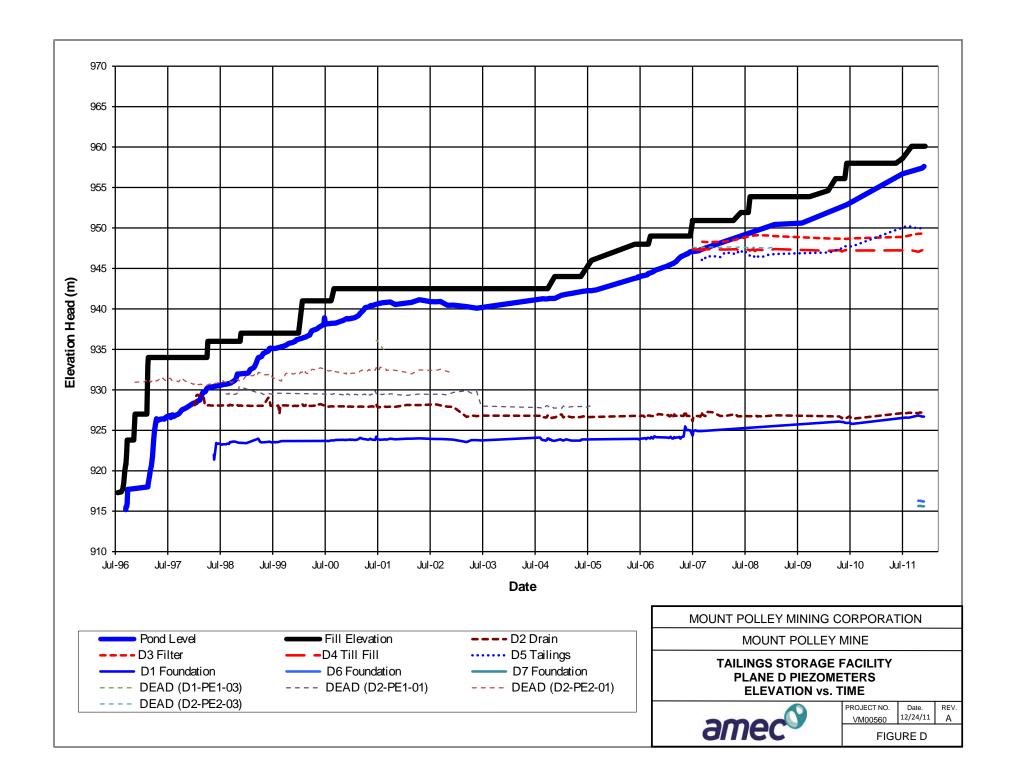


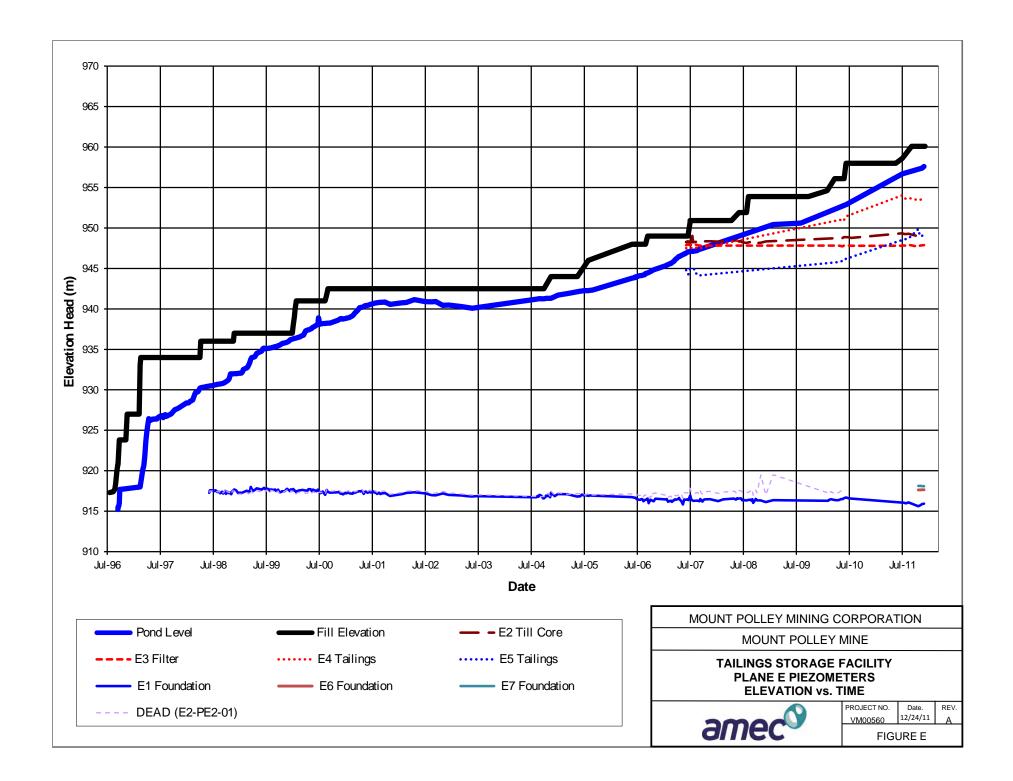
Mt. Polley Cumulative & Time Displacement SI11-04 AB-Axis

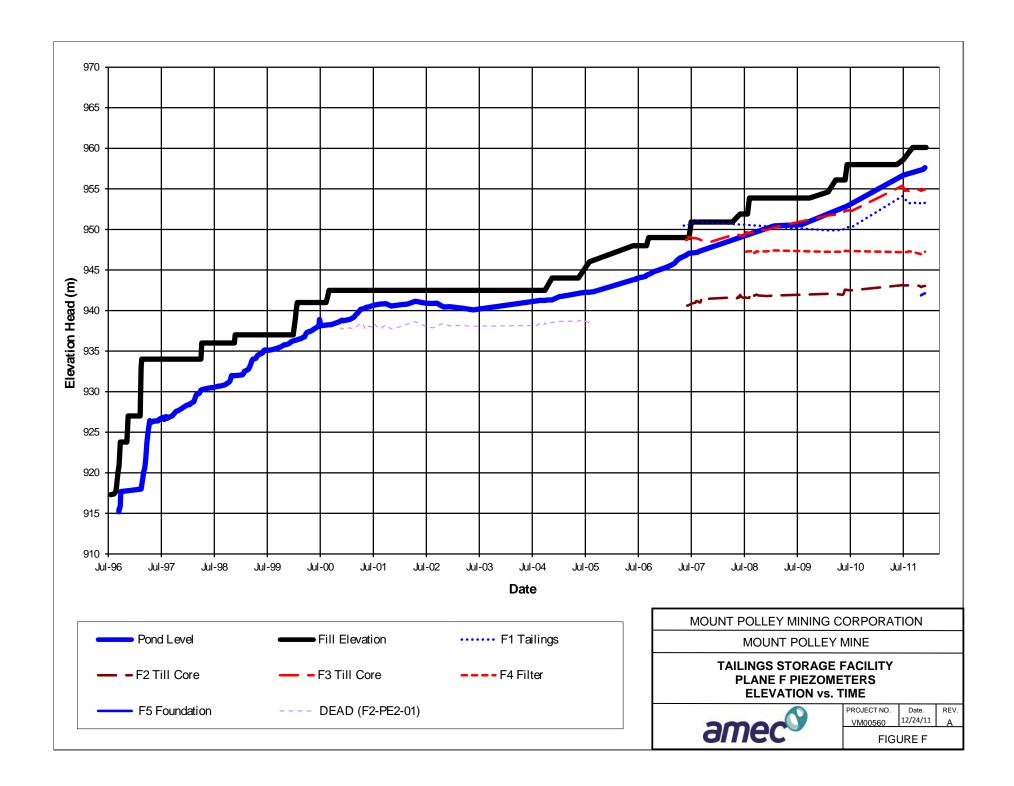


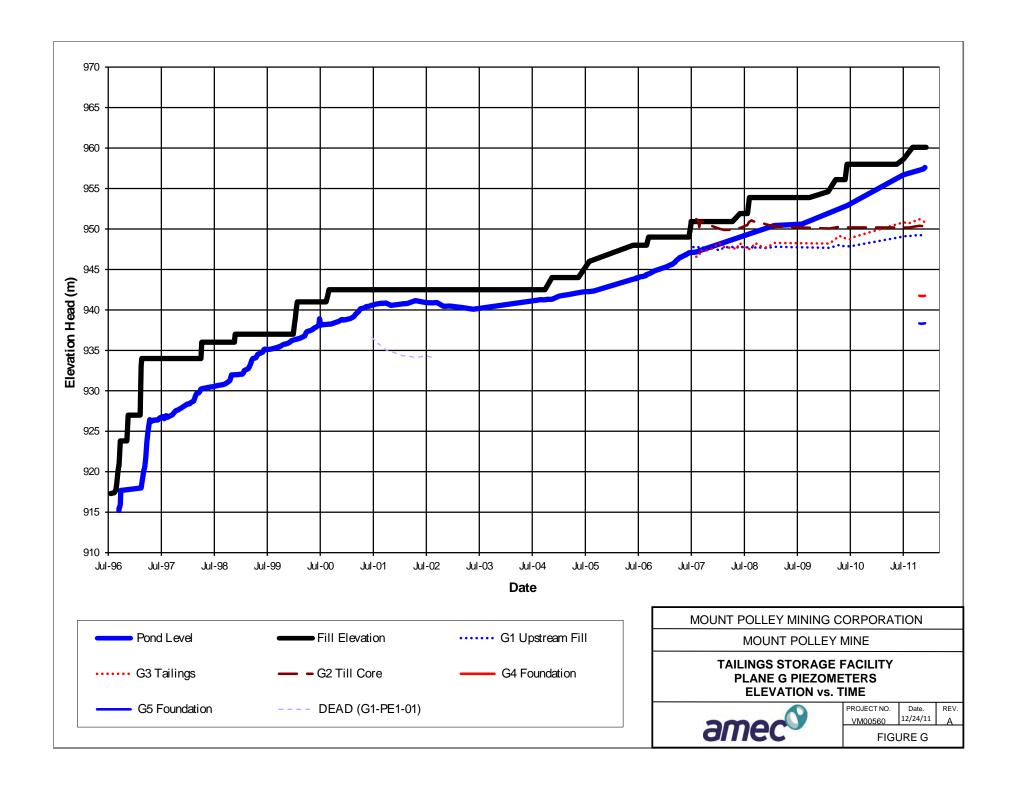


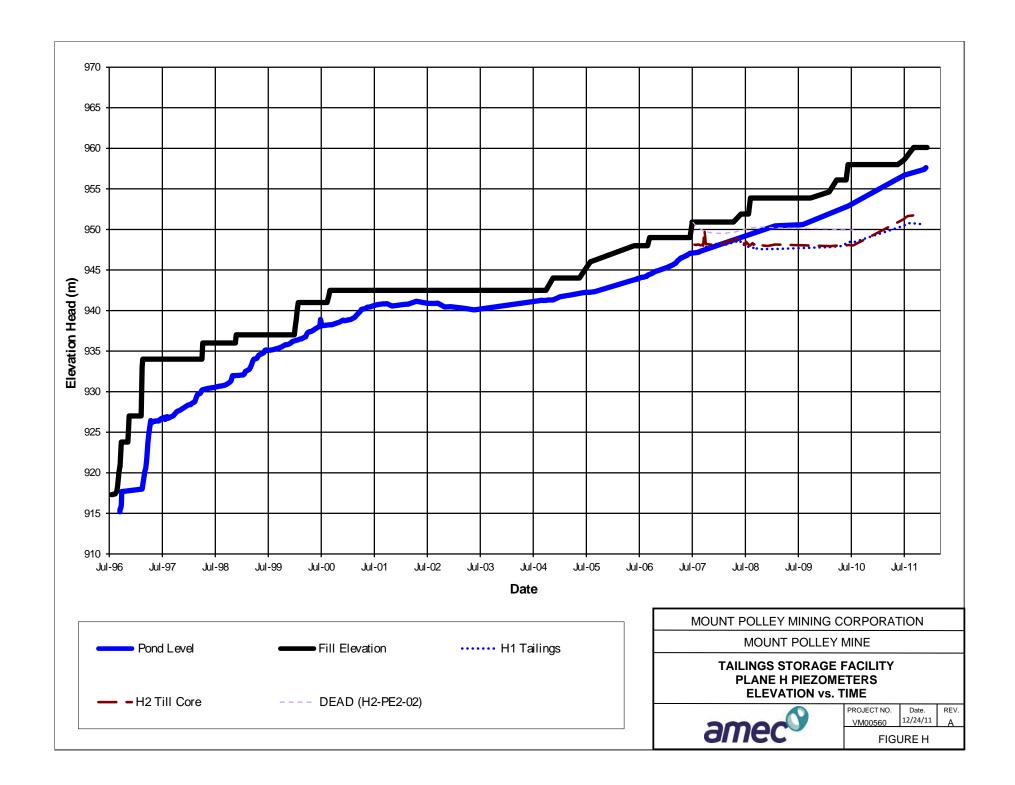

Cumulative Displacement (mm)

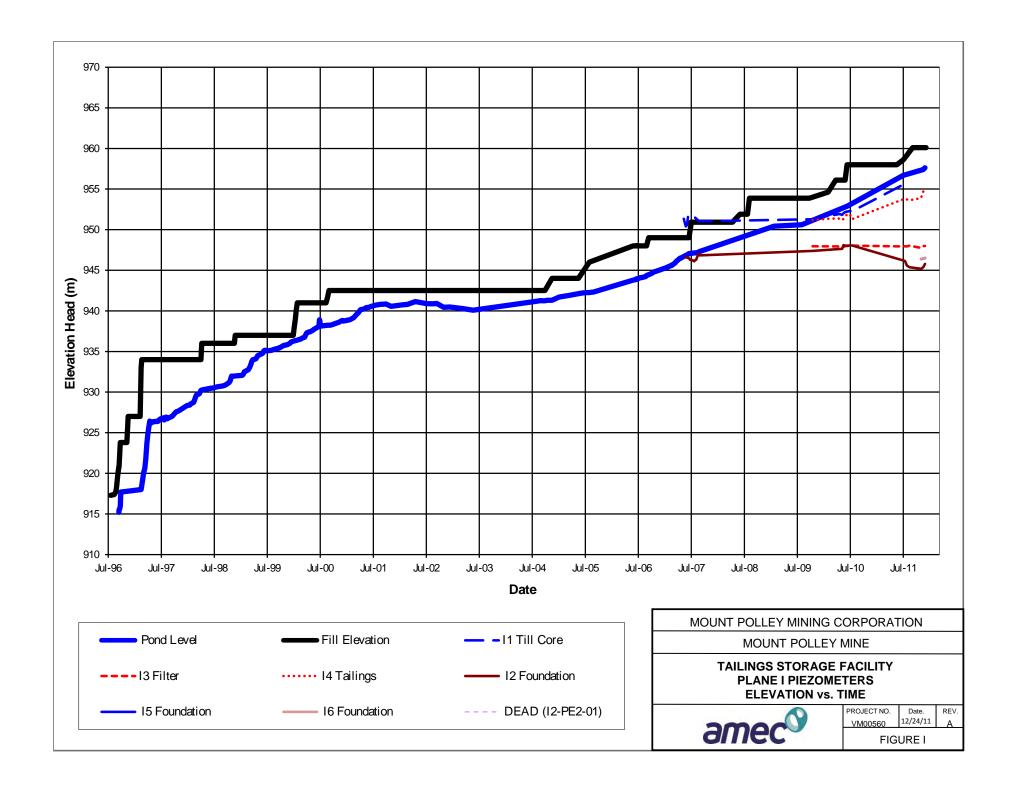


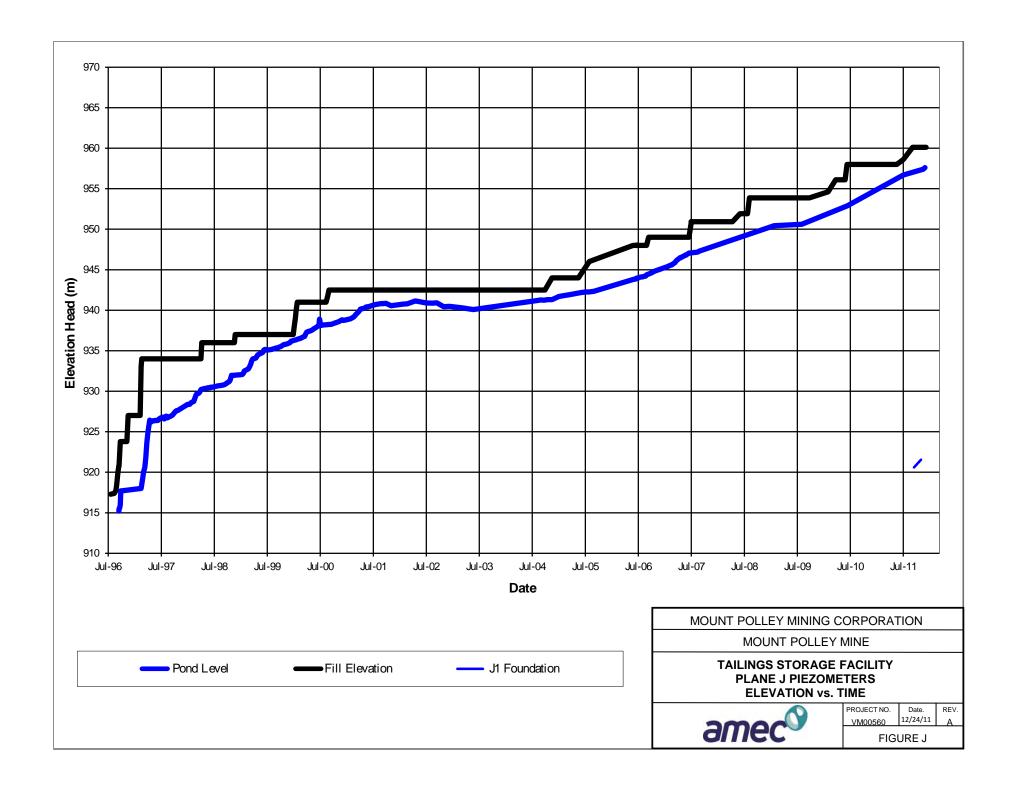

Vibrating Wire Piezometer Plots

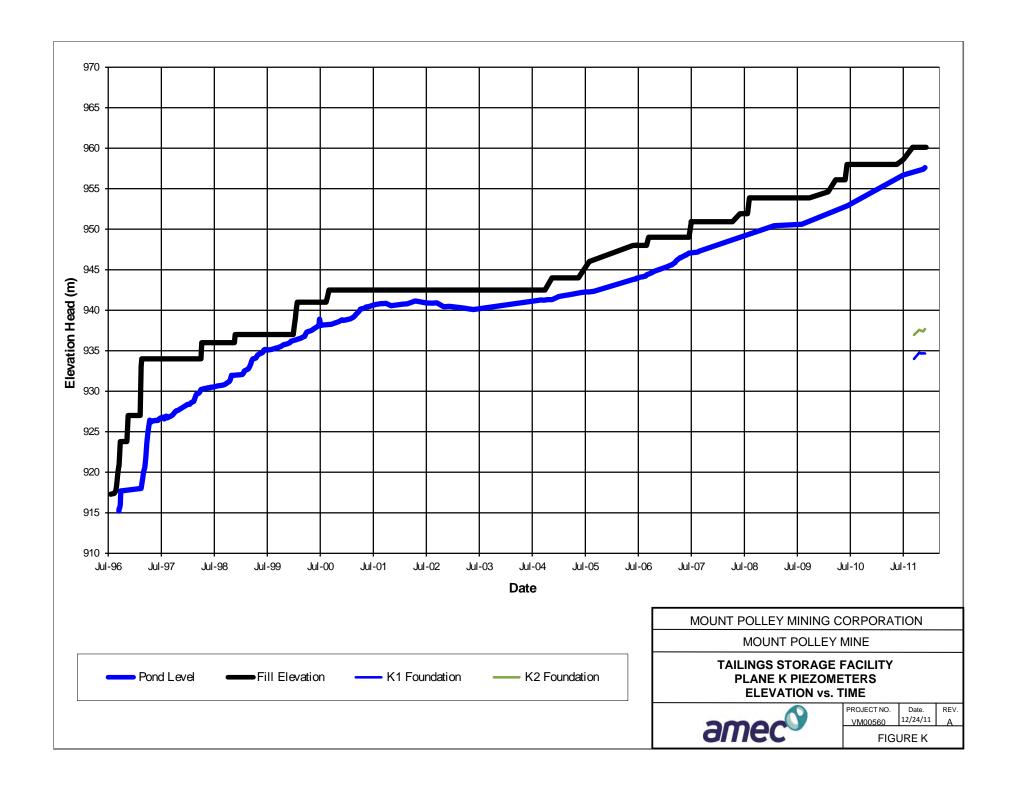












APPENDIX C

2011 CONSTRUCTION SEASON PHOTOS

Photo 1: Relocation of the diversion trench near corner 4.

Photo 4: Filter Trench being backfilled along the south embankment. Note the corrugated pipe placed to tie into existing drainage channel

Photo 2: Test pit conducted at the perimeter abutment.

Photo 5: Proof rolling, compacting the exposed core for Zone S placement.

Tailings Storage Facility 2011 Construction Photos

DATE PREPARED: March 2012 SCALE: NTS PREPARED BY: P. O'Sullivan / D. Ostritchenko PROJECT No: KX04420 TASK 1

Photo 3: Filter trench excavated along the perimeter abutment to tie into the existing trench.

Photo 6: Compacted and proof rolled abutment detail at the south abutment.

Photos 1 to 6

Taken: August 2011

Photo 7: Placement of drainage blanket at the south embankment

Photo 10: Survey stakes delineating drainage blanket placement area at the perimeter abutment.

Photo 8: Placement of Zone T material over the drainage blanket at the south abutment.

Photo 11: Placement of drainage blanket at the perimeter abutment.

Mount Polley Mine

Tailings Storage Facility 2011 Construction Photos

DATE PREPARED: March 2012 SCALE: NTS PREPARED BY: P. O'Sullivan / D. Ostritchenko PROJECT No: KX04420 TASK 1

Photo 9: Removing previously placed material at the perimeter embankment to expose competent native till.

Photo 12: Zone U comprised of NAG rockfill along the Main Embankment.

Photos 7 to 11

Taken: August 2011

Photo 13: Looking northwest along the perimeter embankment (Zones U, S, F, T and C from left to right).

Photo 16: Surficial sampling of perimeter borrow pit.

amec

Photo 14: Looking southeast along the perimeter embankment at the base of Zone U.

Photo 17: Overview of the secondary barge borrow pit, prior to sampling and removal of overburden.

AMEC Environment & Infrastructure 3456 Opie Crescent Prince George, BC, CANADA, V2N 2P9 Tel. (250) 564-3243 Fax. (250) 562-7045

Mount Polley Mine

Tailings Storage Facility 2011 Construction Photos

DATE PREPARED: March 2012 SCALE: NTS PREPARED BY: P. O'Sullivan / D. Ostritchenko PROJECT No: VM00560A

- Photo 15: Perimeter seepage pond discharge into the TSF.

Photos 13 to 18

Photo 19: Looking west along the south embankment during scarification of previously placed Zone S material.

Photo 22: Compaction of Zone S along the perimeter embankment with a 10 ton smooth drum vibratory compactor.

Photo 20: Placement of Zone S on the south embankment.

Photo 23: Shaping downstream toe of Zone S along the main embankment, and exposing previously places Zone F.

Mount Polley Mine

Tailings Storage Facility 2011 Construction Photos DATE PREPARED: March 2012 SCALE: NTS PREPARED BY: P. O'Sullivan / D. Ostritchenko PROJECT No: VM00560A

AMEC Environment & Infrastructure 3456 Opie Crescent Prince George, BC, CANADA, V2N 2P9 Tel. (250) 564-3243 Fax. (250) 562-7045

Photo 21: Spreading Zone S material along the perimeter embankment.

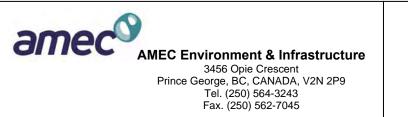
Photo 24: Removing trimmed Zone S material.

Photos 19 to 24

Photo 25: Loading of Zone S material at the perimeter borrow pit.

Zon

Photo 26: Placement of Zone F material along the south embankment.


Photo 28: Embankment fill zones.

Zone T

Zone C

Photo 29: Poorly sorted Zone T material, with areas identified to be removed (south embankment).

Mount Polley Mine

Tailings Storage Facility 2011 Construction Photos

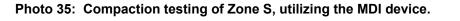
DATE PREPARED: March 2012

SCALE: NTS

PREPARED BY: P. O'Sullivan / D. Ostritchenko

PROJECT No: VM00560A

Photo 27: Shaping of Zone F material along the south embankment.


Photo 30: Approved Zone T material (South Embankment). Note the freshly removed unacceptable fill – see Photo 29).

Photos 25 to 30

Photo 34: Surveying of compaction test location.

Mount Polley Mine

Tailings Storage Facility 2011 Construction Photos

DATE PREPARED: March 2012 SCALE: NTS PREPARED BY: P. O'Sullivan / D. Ostritchenko PROJECT No: VM00560A

Photo 36: Slope Inclinometer reading in progress.